Forward-looking Statements

This handbook includes forward-looking statements that reflect Marine Harvest’s current expectations and views of future events. These forward-looking statements use terms and phrases such as "anticipate", "should", "likely", "foresee", "believe", "estimate", "expect", "intend", "could", "may", "project", "predict", "will" and similar expressions.

These forward-looking statements include statements related to population growth, protein consumption, consumption of fish (including both farmed and wild), global supply and demand for fish (and salmon in particular), aquaculture’s relationship to food consumption, salmon harvests, demographic and pricing trends, market trends, price volatility, industry trends and strategic initiatives, the issuance and awarding of new farming licenses, governmental progress on regulatory change in the aquaculture industry, estimated biomass utilization, salmonid health conditions as well as vaccines, medical treatments and other mitigating efforts, smolt release, development of standing biomass, trends in the seafood industry, expected research and development expenditures, business prospects and positioning with respect to market, and the effects of any extraordinary events and various other matters (including developments with respect to laws, regulations and governmental policies regulating the industry and changes in accounting policies, standards and interpretations).

The preceding list is not intended to be an exhaustive list of all our forward-looking statements. These statements are predictions based on Marine Harvest’s current estimates or expectations about future events or future results. Actual results, level of activity, performance or achievements could differ materially from those expressed or implied by the forward-looking statements as the realization of those results, the level of activity, performance or achievements are subject to many risks and uncertainties, including, but not limited to changes to the price of salmon; risks related to fish feed; economic and market risks; environmental risks; risks related to escapes; biological risks, including fish diseases and sea lice; product risks; regulatory risks including risk related to food safety, the aquaculture industry, processing, competition and anti-corruption; trade restriction risks; strategic and competitive risks; and reputation risks.

All forward-looking statements included in this handbook are based on information available at the time of its release, and Marine Harvest assumes no obligation to update any forward-looking statement.
The purpose of this document is to give investors and financial analysts a better insight into the salmon farming industry, and what Marine Harvest considers to be the most important value drivers.
Table of content

1. Introduction 5
2. Positioning of salmon 7
 2.1 Seafood as part of food consumption 8
 2.2 Seafood as part of overall protein consumption 9
 2.3 Atlantic Salmon as part of overall protein consumption 10
 2.4 Stagnating wild catch – growing aquaculture 11
 2.5 Fish Consumption 12
 2.6 Salmonids contribute 4.4% of global seafood supply 13
 2.7 Considerable opportunities within aquaculture 14
 2.8 Supply of farmed and wild salmonids 15
 2.9 Salmonids harvest 2016 16
3. Salmon Demand 17
 3.1 Macro demand trends 18
 3.2 A healthy product 19
 3.3 Resource efficient production 20
 3.4 Climate friendly production 21
 3.5 Relative price development of protein products 22
4. Salmon Supply 23
 4.1 Total harvest of Atlantic salmon 1997-2017E 24
 4.2 Diminishing growth expected going forward 25
 4.3 Few coastlines feasible for salmon farming 26
5. Salmon Markets 27
 5.1 Global trade flow of farmed Atlantic salmon 28
 5.2 Farmed Atlantic salmon by market 29
 5.3 Development of value vs. volume 30
 5.4 Price neutral demand growth – historically 6-8% 31
 5.5 Historic price development 32
 5.6 Historic price development by local reference prices 33
 5.7 Different sizes – different prices (Norway) 34
6. Industry Structure 35
 6.1 Top 5-10 players of farmed Atlantic salmon 36
 6.2 Number of players in producing countries 37
7. Salmon Production and Cost Structure 38
 7.1 Establishing a salmon farm 39
 7.2 The Atlantic salmon life/production cycle 40
 7.3 Influence of sea water temperature 42
 7.4 Production inputs 43
 7.5 Cost component – disease and mortality 45
 7.6 Accounting principles for biological assets 46
 7.7 Economics of salmon farming 47
 7.8 Cost structure for Marine Harvest in 2016 48
 7.9 Production costs for Marine Harvest in 2016 49
8. Feed Production 50
 8.1 Overview of feed market 51
 8.2 Relative feeding (*) 53
 8.3 Salmon feed producers 54
 8.4 Salmon feed ingredients 55
 8.5 Feed raw material market 57
9. Financial Considerations 58
 9.1 Working Capital 59
 9.2 Capital return analysis 62
 9.3 Currency overview 64
 9.4 Price, cost and EBIT development in Norway 66
 9.5 Effects of geographical diversification 67
10. Barriers to Entry – Licenses 68
 10.1 Regulations of fish farming in Norway 70
 10.2 Regulations of fish farming in Scotland 75
 10.3 Regulations of fish farming in Chile 76
 10.4 Regulations of fish farming in Canada 77
11. Risk Factors 83
 11.1 Salmon disease prevention and treatment 84
 11.2 Most serious health risks to salmon 85
 11.3 Fish health and vaccination (Norway) 86
 11.4 Research and development focus 87
12. Indicators Determining Harvest Volumes 88
 12.1 Projecting future harvest quantities 89
 12.2 Yield per smolt 90
 12.3 Development in biomass during the year 91
13. Secondary Processing (VAP) 92
 13.1 European value-added processing (VAP) industry 94
 13.2 Market segment in the EU (2016) 95
 13.3 The European market for smoked salmon 96
Appendix 97
 Weight conversion ratios and key words 98
 Price indices vs. FOB packing plant 99
 Some historic acquisitions and divestments 100
 Atlantic salmon production cycle 103
 Sustainability of fish feed 104
 The Global Salmon Initiative & the ASC 105
 Marine Harvest history 106
 MHG has a leading position across the value chain 107
 Marine Harvest farming 108
 Marine Harvest sales network 109
 Marine Harvest processing facilities 110
 Marine Harvest sales channels (2016) 111
 Historical average foreign exchange rate 112
 Sources for industry and market information 113
Introduction
Salmon is the common name for several species of fish of the family Salmonidae (e.g. Atlantic salmon, Pacific salmon), while other species in the family are called trout (e.g. brown trout, seawater trout). Although several of these species are available from both wild and farmed sources, most commercially available Atlantic salmon is farmed. Salmon live in the Atlantic Ocean and the Pacific, as well as the Great Lakes (North America) and other land locked lakes.

Typically, salmon are anadromous: they are born in fresh water, migrate to the ocean, then return to fresh water to reproduce.

About 70% of the world's salmon production is farmed. Farming takes place in large nets in sheltered waters such as fjords or bays. Most farmed salmon come from Norway, Chile, Scotland and Canada.

Salmon is a popular food. Salmon consumption is considered to be healthy due to its high content of protein and Omega-3 fatty acids and it is also a good source of minerals and vitamins.
Positioning of salmon
Positioning of salmon

2.1 Seafood as part of food consumption

Per capita Food Consumption (2011)

The average human eats around 685 kg of food each year. Most of this food is produce such as vegetables, fruits, and starchy roots. Animal protein, such as seafood, poultry, pork, and beef, amounts to just under 10% of the total diet.

Per capita Meat Consumption (2011)

Meat as a food source has gradually become more important. The global per capita consumption has almost doubled since 1961, and the seafood segment is a big contributor to this increase.

Sources: FAO/National Geographic: http://www.nationalgeographic.com/what-the-world-eats/
Positioning of salmon

2.2 Seafood as part of overall protein consumption

The UN estimates that the global population will grow to approximately 9.7 billion by 2050.

Although 70% of the Earth’s surface is covered by the ocean, only 6% of the protein sources for human consumption is produced there.

Assuming consumption per capita stays constant, this implies a 35% increase in demand for protein. The UN however, estimates that the actual demand will double. We know that resources for increased land based protein production will be scarce, so a key question is how the production of protein sources from the sea can be expanded.

Sources: FAO (2013); FAOstat Food Balance Sheets, United Nations population data; World Population Prospects: The 2015 Revision
Positioning of salmon

2.3 Atlantic Salmon as part of overall protein consumption

Most animal protein in our diets comes from pork, poultry, and beef, with salmon production representing a small portion of global protein supply.

In 2016, FAO estimated a production of 118 million tonnes Carcass Weight Equivalent (CWE) of pork, 115 million tonnes Ready to Cook Equivalent (RTC) of poultry, and 69 million tonnes CWE of beef and veal.

In contrast, the total production of farmed Atlantic salmon was around 2 million tonnes (GWE). If we combine both the farmed and wild catch of all salmonids it amounts to 3.6 million tonnes (GWE) in 2016.

Sources: OECD-FAO (2016) Agricultural Outlook 2016-2025, Kontali Analyse
Positioning of salmon

2.4 Stagnating wild catch – growing aquaculture

Over the past few decades, there has been a considerable increase in total and per capita fish supply. As the fastest growing animal-based food producing sector aquaculture is a major contributor to this, and it outpaces population growth.

Great progress in breeding technology, system design and feed technology in the second half of the twentieth century has enabled the expansion of commercially viable aquaculture across species and in volume. In 2013-15, China alone produced 62% of global aquaculture output, while Asia as a whole accounted for 88%.

The World Bank developed a scenario analysis in their report Fish to 2030 (2013) projecting that aquaculture will continue to fill the supply-demand gap, and that by 2030, 62% of fish for human consumption will come from this industry.

In 2015, aquaculture accounted for half of all fish supplies destined for direct human food consumption. However, fish has been estimated to account for only 6% of the global protein consumption (and about 16% of total fish and animal protein supply).

2.5 Fish consumption

Given the expected production growth of 17% during 2015–25 and the projected world population growth of 11% over the same period, we will most likely see a global increase in the average fish consumption level.

By 2025, per capita fish consumption is estimated to be 21.8 kg (vs. 9.9kg in the 1960s and 20.4kg in 2015). This is equivalent to another 28 million tonnes supply of seafood, which aquaculture is estimated to provide.

According to FAO, per capita consumption is expected to increase in all continents in the period 2016-2025. Asia is expected to have the highest growth, whilst only slight growth is anticipated in Africa. In general, per capita fish consumption is likely to grow faster in developing countries. However, more developed economies are expected to have the highest per capita consumption.

Sources: FAO (2016); The State of World Fisheries and Aquaculture OECD-FAO (2016) Agricultural Outlook 2016-2025
Positioning of salmon

2.6 Salmonids contribute 4.4% of global seafood supply

Although several of the salmon species are available from both wild and farmed sources, almost all commercially available Atlantic salmon is farmed. Even with an increase in production of Atlantic salmon of more than 800% since 1990, the total global supply of salmonids is still marginal compared to most other seafood categories (4.4% of global seafood supply). Whitefish is about ten times larger and consists of a much larger number of species.

In 2015, more Atlantic salmon was harvested than Atlantic cod and pangasius. However the harvest of Atlantic salmon was only around 25% of two of the largest whitefish species, tilapia and Alaska pollock.

Note: Live weight (LW) is used because different species have different conversion ratios
Source: Kontali Analyse
2.7 Considerable opportunities within aquaculture

The illustration above shows that Atlantic salmon has the highest level of industrialisation and the lowest level of risk compared to other aquaculture species. The size of the circles indicates volume harvested.

Although Atlantic salmon is relatively small in harvest volume compared to other species, it is a very visible product in many markets due to the high level of industrialisation.

Source: Kontali Analyse
The general supply of seafood in the world is shifting more towards aquaculture as the supply from wild catch is stagnating in several regions and for many important species. Wild catch of salmonids varies between 700 000 and 1 000 000 tonnes GWE, whereas farmed salmonids are increasing. The total supply of salmonids was first dominated by farmed in 1999. Since then, the share of farmed salmonids has increased and has become the dominant source.

The total supply of all farmed salmonids exceeded 2 million tonnes (GWE) in 2016. The same year, the total catch volume of wild salmonids was about one third of farmed, with chum, pink and sockeye being the most common species.

About 20% of the total wild catch of salmon is imported frozen by China (from the US, Russia and Japan), and later re-exported as frozen fillets.

Source: Kontali Analyse
Positioning of salmon

2.9 Salmonids harvest 2016

Atlantic salmon: By quantity, the largest species of salmonids. Farmed Atlantic salmon is a versatile product, which can be used for a variety of categories such as smoked, fresh, sushi, as well as ready-made meals. The product is present in most geographies and segments. Due to biological constraints, seawater temperature requirements and other natural constraints, farmed salmon is only produced in Norway, Chile, UK, North America, Faroe Islands, Ireland, New Zealand and Tasmania. **Pink**: Caught in USA and Russia and used for canning, pet food and roe production. Since quality is lower than the other species it is a less valued salmonid. The fish is small in size (1.5-1.7 kg) and is caught over a very short time period.

Large trout: Produced in Norway, Chile and the Faroe Islands, the main markets are Japan and Russia. Trout is mainly sold fresh, but is also used for smoked production.

Small trout: Produced in many countries and most often consumed locally as a traditional dish as hot smoked or portion fish. Small trout is not in direct competition with Atlantic salmon.

Chum: Caught in Japan and Alaska. Most is consumed in Japan and China. In Japan, it is available as fresh, while in China it is processed for local consumption and re-exported. Little chum is found in the EU market. Varied quality and part of the catch is not for human consumption.

Coho: Produced in Chile and is mostly used for salted products. It is a competitor of trout and sockeye in the red fish market. Although Russia has increased its import of this fish over the last few years, Japan remains the largest market.

Sockeye: Caught in Russia and Alaska. It is mostly exported frozen to Japan, but some is consumed locally in Russia and some canned in Alaska. Sockeye is seen as a high quality salmonid and is used for salted products, sashimi and some is smoked in the EU.

Chinook/King: Small volumes, but highly valued. Alaska, Canada and New Zealand are the main supplying countries. Most quantities are consumed locally. Chinook is more in direct competition to Atlantic salmon than the other species and is available most of the year.

Source: Kontali Analyse
Salmon Demand
The global population is growing at an unprecedented speed, resulting in an increased global demand for food. As the middle class is growing in large emerging markets, we especially expect consumption of high quality proteins to increase.

The health benefits of seafood are increasingly being promoted by global health authorities, and aquaculture is more resource efficient than agriculture.

The supply of wild fish has limited potential to meet this demand growth, and soil erosion means we need to investigate new ways of thinking about how to feed the world.

Atlantic salmon as a healthy, resource efficient and climate friendly product from the ocean fits well with these global trends.
Atlantic salmon is rich in the long chain omega-3, EPA and DHA, which reduce the risk of cardiovascular disease. Data also indicates that EPA and DHA reduce the risk of a large number of other health issues.

Salmon is nutritious, rich in micronutrients, minerals, marine omega-3 fatty acids, very high quality protein and several vitamins, and represents an important part of a varied and healthy diet. FAO highlights that: “Fish is a food of excellent nutritional value, providing high quality protein and a wide variety of vitamins and minerals, including vitamins A and D, phosphorus, magnesium, selenium and iodine in marine fish”.

The substantial library of evidence from multiple studies on nutrients present in seafood indicates that including salmon in your diet will improve your overall nutrition, and may even yield significant health benefits. In light of global obesity rates, governments and food and health advisory bodies around the world are encouraging people of all ages to increase their seafood intake, with particular focus on the consumption of oily fish, such as salmon. The U.S. Department of Health and the US Department of Agriculture recommend an intake of at least 237 grams of seafood per week for Americans in general. The UK National Health Service, the Norwegian Directorate of Health and several other national health organisations, recommend eating fish at least twice a week.

3.3 Resource efficient production

<table>
<thead>
<tr>
<th>Protein Retention</th>
<th>31 %</th>
<th>21 %</th>
<th>18 %</th>
<th>15 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Retention</td>
<td>23 %</td>
<td>10 %</td>
<td>14 %</td>
<td>27 %</td>
</tr>
<tr>
<td>Edible Yield</td>
<td>68 %</td>
<td>46 %</td>
<td>52 %</td>
<td>41 %</td>
</tr>
<tr>
<td>Feed Conversion Ratio (FCR)</td>
<td>1.1</td>
<td>2.2</td>
<td>3.0</td>
<td>4-10</td>
</tr>
<tr>
<td>Edible Meat pr 100 kg fed</td>
<td>61 kg</td>
<td>21 kg</td>
<td>17 kg</td>
<td>4-10 kg</td>
</tr>
</tbody>
</table>

To optimize resource utilization it is vital to produce animal proteins in the most efficient way. Protein resource efficiency is expressed as “Protein retention”, which is a measure of how much animal food protein is produced per unit feed protein fed to the animal. Salmon has a protein retention of 31%, which is the most efficient in comparison with chicken, pork, and cattle (see table above).

Energy retention is measured by dividing energy in edible parts by gross energy fed. Both cattle and Atlantic salmon has a high energy retention compared to pork and chicken.

The main reason why salmon convert protein and energy to body muscle and weight so efficiently is because they are cold-blooded and therefore do not have to use energy to heat their bodies. They also do not use energy standing up like land animals.

- Edible yield is calculated by dividing edible meat by total body weight. As much as 68% of Atlantic salmon is edible meat, while other protein sources have a higher level of waste or non-edible meat.

- Feed conversion ratios measure how productive the different animal protein productions are. In short, this tells us the kilograms of feed needed to increase the animal’s bodyweight by one kg. Feed for Atlantic salmon is high in protein and energy which accounts for the feed conversion ratio being even more favourable for Atlantic salmon than protein and energy retention when compared with land animal protein productions.

- Edible meat per 100kg of feed fed: The combination of the FCR ratio and edible yield, gives salmon a favourably high quantity of edible meat per kg of feed fed.

In addition to its resource efficient production, farmed fish is also a climate friendly protein source. It is expected to become an important solution to providing the world with vitally important proteins while limiting the negative effect on the environment. There is for example less environmental impact in salmon production compared to other protein producers.

When comparing the environmental impact of farmed salmon to traditional meat production, the carbon footprint for the farmed salmon is 2.9 carbon equivalents per kilogram of edible product whilst corresponding figures are 2.7kg and 5.9kg of edible product for chicken and pork, respectively. Cattle’s carbon footprint is as much as 30 carbon equivalents per kilogram of edible product.

Freshwater is a renewable but limited natural resource, and human activities can cause serious damage to the surrounding environment. In Norway, farmed Atlantic salmon requires 2,000 litres per kg of fresh water in production which is significantly less than other proteins.

| Carbon Footprint (kg CO2/kg edible meat) | 2.9 kg | 2.7 kg | 5.9 kg | 30 kg |
| Water Consumption (litre/kg edible meat) | 2,000 litre (1) | 4,300 litre | 6,000 litre | 15,400 litre |

Note: 1) The figure reflects total water footprint for farmed salmonid fillets in Scotland, in relation to weight and content of calories, protein and fat.

3.5 Relative price development of protein products

Along with some other major food sources containing animal protein, like pork and lamb, salmon has become relatively cheaper over the past few decades. However, recently the price of salmon has increased more than other proteins.

Salmon has historically always been a rather expensive product in the shelves. Only lamb has had a higher relative price.

Source: International Monetary Fund Marine Harvest
Salmon Supply
Salmon Supply

4.1 Total harvest of Atlantic salmon 1997-2017E

<table>
<thead>
<tr>
<th>CAGR</th>
<th>Norway</th>
<th>Chile</th>
<th>UK</th>
<th>North America</th>
<th>Others</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997-2017E</td>
<td>7 %</td>
<td>9 %</td>
<td>3 %</td>
<td>4 %</td>
<td>7 %</td>
<td>7 %</td>
</tr>
<tr>
<td>2005-2017E</td>
<td>6 %</td>
<td>3 %</td>
<td>3 %</td>
<td>3 %</td>
<td>10 %</td>
<td>5 %</td>
</tr>
<tr>
<td>2010-2017E</td>
<td>3 %</td>
<td>22 %</td>
<td>2 %</td>
<td>2 %</td>
<td>9 %</td>
<td>6 %</td>
</tr>
</tbody>
</table>

Note: Figures are in thousand tonnes GWE and “Others” includes the Faroe Islands, Ireland, Tasmania, Iceland and Russia.
Source: Kontali Analyse
Supply of Atlantic salmon has increased by 384% since 1995 (annual growth of 8%). The annual growth has diminished in recent years with 5% growth in the period 2005-2016. Kontali Analyse expects growth to diminish further going forward and has projected a 3% annual growth from 2016 to 2020.

The background for this trend is that the industry has reached a production level where biological boundaries are being pushed. It is therefore expected that future growth can no longer be driven only by the industry and regulators as measures are implemented to reduce its biological footprint. This requires progress in technology, the development of improved pharmaceutical products, implementation of non-pharmaceutical techniques, improved industry regulations and intercompany cooperation.

Too rapid growth without these measures in place adversely impacts biological indicators, costs, and in turn output.

Note: Marine Harvest does not provide guidance of industry supply except from guidance depicted in quarterly presentations.

Source: Kontali Analyse, Population Division of the Department of Economic and Social Affairs of the United Nations, World Population Prospects: The 2015 Revision
4.3 Few coastlines feasible for salmon farming

The main coastal areas adopted for salmon farming are depicted on the above map. The coastlines are within certain latitude bands on the Northern and Southern Hemisphere.

A key condition is a temperature range between above zero and 18-20°C. The optimal temperature range for salmon is between 8 and 14°C.

Salmon farming also requires a certain current to allow a flow of water through the farm. The current must however be below a certain level to allow the fish to move freely around in the sites. Such conditions are typically found in waters protected by archipelagos and fjords and rule out several coastlines.

Certain biological parameters are also required to allow efficient production. The biological conditions vary significantly within the adopted areas and are prohibitive for certain other areas.

Political willingness to permit salmon farming and to regulate the industry is also required. Licence systems have been adopted in all areas where salmon farming is carried out.
05

Salmon Markets
Salmon Markets

5.1 Global trade flow of farmed Atlantic salmon

Historically, the main market for each production origin has been:

• Norway – EU, Russia and Asia
• Chile – USA, South America and Asia
• Canada – USA (west coast)
• Scotland – mainly domestic/within the UK (limited export)

Each producing region has historically focused on developing the nearby markets. As salmon is primarily marketed as a fresh product, time and cost of transportation has driven this trend.

A relatively high price differential is therefore required to justify cross Atlantic trade as this requires the cost of airfreight. Such trade varies from period to period and depends on arbitrage opportunities arising from short term shortage and excess volume from the various producing countries.

The Asian market is generally shared as the transportation costs are broadly similar from all producing regions.

Distribution of frozen salmon is much more straightforward but this category is decreasing.

Note: Figures are from 2016 and in thousand tonnes GWE. Not all markets are included in the illustration.
Source: Kontali Analyse
Europe (incl. Russia) and North America are by far the largest markets for Atlantic salmon. However, emerging markets are growing at significantly higher rates than these traditional markets. As all harvested fish is sold and consumed in the market, the demand beyond 2016 is assumed equal to supply (estimated by Kontali Analyse). The market for Atlantic salmon has on average increased by 5.7% in all markets over the last 10 years and by 7.3% over the last 20 years.

Source: Kontali Analyse
When analysing an average of the reference prices, the value of salmon sold in 2016 is almost 4 times higher than in 2004. During the same period the underlying volume has only grown by 79% (CAGR 5%). This is a good illustration for the strong underlying demand for the product.

Source: Kontali Analyse
Salmon Markets

5.4 Price neutral demand growth - historically 6-8%

Analysing the data results in a linear correlation between global supply and change in the Nasdaq price from Norway. This accounted for 84% of the annual price development between 2000 and 2011. In 2012 and 2013 demand for salmon significantly overperformed.

The price correlation across regional markets is generally strong for Atlantic salmon.

Growth in global supply of Atlantic salmon is estimated at 157% in the period 2000-2016 (annual CAGR 6%), varying between -4% and 22% annually. Variation in growth rates has been the main determinant for the variation in prices. Annual average prices have varied between EUR 2.42 (2003) and EUR 6.61 (2016).

<table>
<thead>
<tr>
<th>Global supply growth YOY</th>
<th>Change in avg price FCA Oslo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>15 %</td>
</tr>
<tr>
<td>2002</td>
<td>8 %</td>
</tr>
<tr>
<td>2003</td>
<td>7 %</td>
</tr>
<tr>
<td>2004</td>
<td>6 %</td>
</tr>
<tr>
<td>2005</td>
<td>5 %</td>
</tr>
<tr>
<td>2006</td>
<td>1 %</td>
</tr>
<tr>
<td>2007</td>
<td>10 %</td>
</tr>
<tr>
<td>2008</td>
<td>5 %</td>
</tr>
<tr>
<td>2009</td>
<td>3 %</td>
</tr>
<tr>
<td>2010</td>
<td>-4 %</td>
</tr>
<tr>
<td>2011</td>
<td>12 %</td>
</tr>
<tr>
<td>2012</td>
<td>22 %</td>
</tr>
<tr>
<td>2013</td>
<td>2 %</td>
</tr>
<tr>
<td>2014</td>
<td>8 %</td>
</tr>
<tr>
<td>2015</td>
<td>5 %</td>
</tr>
<tr>
<td>2016</td>
<td>-4 %</td>
</tr>
</tbody>
</table>

Source: Kontali Analyse
Salmon Markets
5.5 Historic price development

Due to the long production cycle and the short shelf life of the fresh product (about 3 weeks), the spot price clears on the basis of the overall price/quantity preference of customers.

As salmon is perishable and marketed fresh, all production in one period has to be consumed in the same period. In the short term, the production level is difficult and expensive to adjust as the planning/production cycle is three years long. Therefore, the supplied quantity is very inelastic in the short term, while demand also shifts according to the season. This has a large effect on the price volatility in the market.

Factors affecting market price for Atlantic salmon are:
Supply (absolute and seasonal variations)
Demand (absolute and seasonal variations)
Globalisation of the market (arbitrage opportunities between regional markets)
Presence of sales contracts reducing quantity availability for the spot market
Flexibility of market channels
Quality
Disease outbreaks
Food scares

Comparing FCA Oslo, FOB Miami and FOB Seattle, there are clear indications of a global market as the prices correlate to a high degree.

Source: Kontali Analyse
Salmon Markets

5.6 Historic price development by local reference prices

The three graphs show yearly average prices of salmon from 2000 to week 16 in 2017. As in most commodity industries, the producers of Atlantic salmon are experiencing large volatility in the price achieved for the product. The average price (GWE based) for Norwegian whole salmon since 2000 has been about EUR 4/kg (NOK 31.73/kg), for Chilean salmon fillet (2-3lb) USD 3.6/lb (USD 7.9/kg), and for Canadian salmon (8-10lb) USD 2.3/lb (USD 4.5/kg). The pricing of Scottish and Faroese salmon is linked to the price of Norwegian salmon. The price of Scottish salmon has normally gained a premium of EUR 0.4-0.6/kg (NOK 3-5/kg) to Norwegian salmon. The price of the Faroese salmon used to trade with a small discount versus Norwegian salmon. However, due to geopolitical events in recent years salmon from Faroes now has a premium over Norwegian salmon in selected markets.

Source: Kontali Analyse
Salmon Markets
5.7 Different sizes – different prices (Norway)

The most normal market size for a salmon is 4/5 kg GWE. The reason for the different sized fish is mainly because salmon farming is a biological production process, where the fish has different growth cycles and the biomass represents a normal distributed size variation.

The markets for the different sizes vary, as can be seen in the above graph. The processing industry in Europe mainly uses 3-6 kg GWE but there are niche markets for small and large fish. As these markets are minor compared to the main market, they are easily disrupted if quantities become too high. Generally, small fish sizes are discounted and large sized fish are sold at premium.

In Norway over the past 5 years, we have seen a normal distribution on harvest size around the mean of 4-5 kg (GWE), where market risk and biological risk are balanced out. Drivers behind a smaller size can for instance be disease, early harvest when there is a need for cash flow or early harvest to realise ongoing capacity. Larger fish (6-7 kg +) may be a result of economies of scale/lower production costs, production for niche markets or other market requirements.

Source: Kontali Analyse
Industry Structure
The Marine Harvest Group represents the largest total production and produces around one quarter of the salmon produced in Norway, and about one third of the total produced in North America and the UK.

In Norway and Chile there are several other producers of a significant quantity of Atlantic salmon. In Chile, several of the companies also produce other salmonids, such as coho and large trout.
The graph shows the number of players producing 80% of the farmed salmon and trout in each major producing country.

During the last decade the salmon farming industry has been through a period of consolidation in all regions and this is expected to continue.

Historically, the salmon industry has been made up by many small firms. As illustrated above, this has been the case in Norway, and to some degree in Scotland and Chile.

The higher level of fragmentation in Norway compared to Chile is the result of the Norwegian government’s priority for decentralised structures and local ownership. In Chile the government place fewer demands on ownership structures in order to grow the industry faster.

There are a total of 151 companies who own commercial licenses for salmon and trout in Norway, however some of these are controlled by other companies. The total supply is produced by 98 companies (through themselves or subsidiaries).

There are approximately 1,320 commercial licenses for the on-growing of Atlantic salmon, trout and coho in Chile. 87% of these are held by 20 companies with the 10 largest firms accounting for 70% of the total licenses. Only between 300-350 licenses are in operation.

Note: See appendix for some historical acquisitions and divestments
Source: Kontali Analyse
Salmon Production and Cost Structure
The salmon farming production cycle is about 3 years. During the first year of production the eggs are fertilised and the fish is grown to approximately 100 grams in a controlled freshwater environment.

The fish is then transported to seawater cages where it is grown to around 4-5 kg over a period of 14-24 months. The growth of the fish is heavily dependent on the seawater temperatures, which vary by time of year and across regions.

When it reaches harvestable size, the fish is transported to processing plants where it is slaughtered and gutted. Most salmon is sold gutted on ice in a box (GWE).
Salmon Production and Cost Structure

7.2 The Atlantic salmon life/production cycle

10-16 months

1. Spawn

14-24 months

2. Brood – Parr - Smolt

3. Transfer to sea

4. Growth phase in sea

5. Slaughtering

6. Processing

Note: See appendix for some historical acquisitions and divestments
Source: Marine Harvest
Salmon Production and Cost Structure

7.2 The Atlantic salmon life/production cycle

The total freshwater production cycle takes approximately 10-16 months with the seawater production cycle lasting around 14-24 months, giving a total cycle length of 24-40 months. In Chile, the cycle is slightly shorter as the sea water temperatures are more optimal with fewer fluctuations.

In autumn, the broodstock are stripped for eggs and the ova inlay takes place between November and March. The producer can speed up the growth of the juveniles with light manipulation which accelerates the smoltification process by up to 6 months.

In Norway, smolts are mainly released into seawater twice a year. Harvesting is spread evenly throughout most of the year, although most harvesting takes place in the last quarter of the year as this is the period of best growth. During summer, the supply to the market is significantly different to the rest of the year as the harvesting pattern shifts to a new generation. During this time the weight dispersion between the large and small harvested salmon is greater than the rest of the year.

After a site is harvested, the location is fallowed between 2 and 6 months before the next generation is put to sea at the same location. Smolts may be released in the same location with a two year cycle.
The sea water temperatures vary considerably throughout the year in all production regions. While the production countries in the northern hemisphere see low temperatures during the beginning of the year and high temperatures in autumn varying as much as 10°C, the temperature in Chile is more stable varying between 10°C and 14°C. Chile has the highest average temperature of 12°C, while Ireland has 11°C and the three other regions have an average temperature of about 10°C.

As the salmon is a cold-blooded animal (ectotherm), the temperature plays an important role in its growth rate. The optimal temperature range for Atlantic salmon is 8-14°C, illustrated by the shaded area on the graph. Temperature is one of the most important natural competitive advantages that Chile has compared to the other production regions as the production time there historically has been shorter by a few months.

With high seawater temperatures, disease risk increases, and with temperatures below 0°C, mass mortality becomes more likely, both of which cause the growth rate to fall.

Source: Marine Harvest, www.seatemperature.org
Eggs

There are several suppliers of eggs to the industry. Aquagen AS, Fanad Fisheries Ltd, Lakeland and Salmobreed AS are some of the most significant by quantity. Egg suppliers can tailor their production to demand by obtaining more or less fish for breeding during the preceding season. Production can easily be scaled. The market for salmon eggs is international.

Smolt

The majority of smolt are produced “in-house” by vertically integrated salmon farmers. This production is generally for a company’s own use, although a proportion may also be sold to third parties. A smolt is produced over a period of 6-12 months from the eggs being fertilised to a mature smolt with weight of 60-100 grams. There has been a trend that smolts (post smolt) are increasing in size in order to shorten the time at sea (100-1,000 grams).
Salmon Production and Cost Structure

7.4 Production inputs

Labour

According to SSB the Norwegian aquaculture industry employed 6,730 full time members of staff in 2015. A Nofima report stated that 15,000 people were employed in businesses involved in activities connected with the aquaculture industry in 2013. In total there are over 21,000 full people employed full time either directly or indirectly by the aquaculture industry in Norway.

According to the Scottish Salmon Producers Organisation (SSPO), over 2,100 people are employed in salmon production in Scotland. The Scottish Government estimates that over 8,000 jobs are generated directly or indirectly by the aquaculture industry.

Estimates on Canadian employment say that around 14,000 people are employed in aquaculture, where 5,800 jobs are employment on farms. Direct employment in Chilean aquaculture (including processing) was estimated at around 30,000 people in 2014.

The Marine Harvest Group has a total of 12,717 employees in 24 countries worldwide (31 Dec 2016).

In Norway, salaries and levels of automation are highest in the Group, while the opposite is the case in Chile. Salaries in the UK and Canada are lower than in Norway.

Electricity

Electricity is mainly used in the earliest and last stage in the salmon’s life cycle. To produce a good quality smolt, production normally takes place in tanks on land where the water temperature is regulated and/or recirculated which requires energy (accounting for 4-5% of smolt cost in Norway). The cost of energy consumption will depend on the price of electricity and the temperature. A cold winter will demand more electricity to heat the water used in the smolt facility. The size of the smolt will also affect the electricity consumption as a larger smolt has a longer production cycle in the smolt facility. When the salmon is processed energy is consumed. However, this depends on the level of automation (2-3% of harvest cost in Norway).

Source: Marine Harvest, Kontali Analyse, SSB, SSPO, Government of Canada, Estudio Situación Laboral en la Industria del Salmón*, Silvia Leiva 2014
EBIT costs per kg decline with increasing harvest weight. If fish is harvested at a lower weight than optimal (caused by diseases for example), EBIT costs per kg will be higher.

During the production cycle, some mortality will occur. Under normal circumstances, the highest mortality rate will be observed during the first 1-2 months after the smolt is put into seawater, while subsequent stages of the production cycle normally have a lower mortality rate.

Elevated mortality in later months of the cycle is normally related to outbreaks of disease, treatment of sea lice or predator attacks.

There is no strict standard for how to account for mortality in the accounts, and there is no unified industry standard. Three alternative approaches are:

- Charge all mortality to expense when it is observed
- Capitalise all mortality (letting the surviving individuals carry the cost of dead individuals in the balance sheet when harvested)
- Only charge exceptional mortality to expense (mortality, which is higher than what is expected under normal circumstances)

It is not possible to perform biological production without any mortality. By capitalising the mortality cost, the cost of harvested fish will therefore reflect the total cost for the biomass that can be harvested from one production cycle.
Biological assets are measured at fair value less cost to sell, unless the fair value cannot be measured reliably.

Effective markets for the sale of live fish do not exist so the valuation of live fish implies establishment of an estimated fair value of the fish in a hypothetical market. The calculation of the estimated fair value is based on market prices for harvested fish and adjusted for estimated differences. The prices are reduced for harvesting costs and freight costs to market, to arrive at a net value back to farm. The valuation reflects the expected quality grading and size distribution. The change in estimated fair value is recognised in profit or loss on a continuous basis, and is classified separately (not included in the cost of the harvested biomass). On harvest, the fair value adjustment is reversed on the same line.

The biomass valuation includes the full estimated fair value of fish at and above harvest size (4 kg LW). For fish between 1 kg and 4 kg LW a relative share of future value is included. In the best fair value estimate for fish below 1 kg, smolt and broodstock is considered to be accumulated cost. The valuation is completed for each business unit and is based on biomass in the sea for each sea water site. The fair value reflects the expected market price. The market price is derived from a variety of sources, normally a combination of achieved prices last month and the most recent contract entered into. For Marine Harvest Norway, quoted forward prices (Fish Pool) are also included in the calculation.

Operational EBIT
Operational EBIT and other operational results are reported based on the realised costs of harvested volume and do not include the fair value adjustments on biomass.
The salmon farming industry is capital intensive and volatile. This is a result of a long production cycle, a fragmented industry, market conditions and a biological production process which is affected by many external factors.

Over time, production costs have been reduced and productivity has increased as new technology and techniques have improved. In recent years, costs have trended upwards due to several factors including rising feed costs, biological costs and more stringent regulatory compliance procedures.

Reported revenues: Revenues are a gross figure; they can include invoiced freight from reference place (e.g. FCA Oslo) to customer, and have discounts, commissions and credits deducted. Reported revenues can also include revenues from trading activity, sales of by-products, insurance compensation, gain/loss on sale of assets etc.

Price: Reported prices are normally stated in the terms of a specific reference price e.g. the Nasdaq price for Norway (FCA Oslo) and UB price for Chile (FOB Miami). Reference prices do not reflect freight, and other sales reducing items mentioned above. Reference prices are for one specific product (Nasdaq price = sales price per kg head on gutted fish packed fresh in a standard box). Sales of other products (frozen products, fresh fillets and portions) will cause deviation in the achieved prices vs. reference price. Reference prices are for superior quality fish, while achieved prices are for a mix of qualities, including downgrades. Reference prices are spot prices, while most companies will have a mix of spot and contract sales in their portfolio.

Quantity: Reported quantity can take many forms. Quantity harvested = Fish harvested in a specific period in a standardized term; e.g. Gutted Weight Equivalent (GWE), which is the same weight measure as Head-on-Gutted (HOG), or Whole Fish Equivalent (WFE), the difference being gutting loss. Quantity sold can be reported using different weight scales:

- Kg sold in product weight.
- Kg sold converted to standard weight unit (GWE or WFE).
- Quantity sold could also include traded quantity.
Salmon Production and Cost Structure

7.8 Cost structure for Marine Harvest in 2016

Norway (NOK)
- Non-seawater cost: 17%
- Other seawater cost: 38%
- Feed: 45%

Canada (CAD)
- Non-seawater cost: 17%
- Other seawater cost: 40%
- Feed: 43%

Scotland (GBP)
- Non-seawater cost: 20%
- Other seawater cost: 41%
- Feed: 39%

Chile (USD)
- Non-seawater cost: 31%
- Other seawater cost: 36%
- Feed: 33%
Salmon Production and Cost Structure

7.9 Production costs for Marine Harvest in 2016

The figures below illustrate the main cost components and their relative importance in the farming of salmon in the four biggest regions. The cost level is chosen for illustration purposes.

<table>
<thead>
<tr>
<th></th>
<th>Norway (NOK)</th>
<th>Canada (CAD)</th>
<th>Scotland (GBP)</th>
<th>Chile (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
<td>15.20</td>
<td>2.44</td>
<td>1.56</td>
<td>1.96</td>
</tr>
<tr>
<td>Primary processing</td>
<td>2.76</td>
<td>0.47</td>
<td>0.29</td>
<td>0.50</td>
</tr>
<tr>
<td>Smolt</td>
<td>2.91</td>
<td>0.58</td>
<td>0.42</td>
<td>0.67</td>
</tr>
<tr>
<td>Salary</td>
<td>2.00</td>
<td>0.51</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td>Maintenance</td>
<td>1.18</td>
<td>0.21</td>
<td>0.16</td>
<td>0.23</td>
</tr>
<tr>
<td>Well boat</td>
<td>1.06</td>
<td>0.18</td>
<td>0.19</td>
<td>0.26</td>
</tr>
<tr>
<td>Depreciation</td>
<td>1.00</td>
<td>0.25</td>
<td>0.19</td>
<td>0.23</td>
</tr>
<tr>
<td>Sales & Marketing</td>
<td>0.30</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Mortality</td>
<td>0.71</td>
<td>0.00</td>
<td>0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>Other</td>
<td>6.36</td>
<td>1.11</td>
<td>0.81</td>
<td>1.44</td>
</tr>
<tr>
<td>Total*</td>
<td>33.49</td>
<td>5.77</td>
<td>4.00</td>
<td>5.58</td>
</tr>
</tbody>
</table>

Feed: As in all animal production, feed makes up the largest share of the total cost. The variation in costs between the countries is based on somewhat different inputs to the feed, logistics and the feed conversion ratio.

Smolt: Smolt production is done in two different ways; in closed/re-circulated systems in tanks on land or in lakes. The smolt is produced in fresh water until it weighs around 100g and is placed in sea water. The UK has the highest costs as there has been low scale production in both land based systems and tanks. Chile has historically used lakes for this production and has had cheap labour, while in Norway there has been a shift from production in lakes to large scale production in land-based systems.

Salary: Salary levels differ between the production regions but in general the salary cost is low as automated production means the cost of labour cost is a minor part of the total cost.

Well boat/processing: Transportation costs of live fish, slaughtering, processing and packing are all heavily dependent on quantity, logistics and automation.

Other operational costs: Other costs include direct and indirect costs, administration, insurance, biological costs (excluding mortality), etc.
Feed Production
8.1 Overview of feed market

The global production of manufactured feed was around 1,026 million tonnes in 2016. The majority is used for land living animals, where more than 90% is used in the farming of poultry, pig and ruminants. Only 4%, or 39.9 million tonnes, of the global production of manufactured feed was used in aquatic farming.

Most aquatic feed produced globally is used for carp as this is the predominant fish species. Feed for salmonids only accounts for 11% of the total production of aquatic feed.

Source: Kontali Analyse
Atlantic salmon is the most farmed species of salmonids and is therefore the largest consumer of salmonid feed.

Most of the feed used in farming of salmonids is produced close to where it is farmed. Norway used 46% of the global feed directed towards the salmonid segment in 2016 and Chile used 28%.

Source: Kontali Analyse
The production of feed around the world varies as there are large deviations in sea temperature. Norway has the largest seasonality in production. The low season is from February to April, the high season is from July to September, with mid season in between. Production in the low season can be as low as only 30% of the high season. Feed is considered a perishable product with a shelf life normally up to a maximum of one year. As the turnover of feed is usually high the shelf life is not considered an issue in large operations.

*Relative feeding: (Feed sold or fed during a month) / (Biomass per primo in month)
Source: Kontali Analyse
During the last decade, the salmonid feed industry has become increasingly consolidated. Since 2008, there have been three producers that have controlled the majority of the salmon feed output; Skretting (subsidiary of Nutreco which has been acquired by SHV), EWOS and BioMar (subsidiary of Schouw). The companies all operate globally.

In mid-2014, Marine Harvest began production of feed from its new feed plant. The plant produced 310,242 tonnes in 2016 compared to a global salmonid feed production of around 3.7 million tonnes. Marine Harvest’s market share has more than doubled between the end of 2014 to 2015.

The major cost elements when producing salmonid feed are the raw materials required and production costs.

The feed producers have historically operated on cost-plus contracts, leaving the exposure of raw material prices with the aquaculture companies.

Source: Kontali Analyse, Marine Harvest
8.4 Salmon feed ingredients

Atlantic salmon feeds should provide proteins, energy and essential nutrients to ensure high muscle growth, energy metabolism and good health. Historically, the two most important ingredients in fish feed have been fish meal and fish oil. The use of these two marine raw materials in feed production has been reduced and replaced with ingredients such as soy, sunflower, wheat, corn, beans, peas, poultry by-products (in Chile and Canada) and rapeseed oil. This substitution is mainly due to heavy constraints on the availability of fish meal and fish oil.

Atlantic salmon have specific nutrient requirements for amino acids, fatty acids, vitamins, minerals and other lipid- and water soluble components. These essential nutrients can in principle be provided by the range of different raw materials listed above. Fish meal and other raw materials of animal origin have a more complete amino acid profile and generally have a higher protein concentration compared to proteins of vegetable origin. As long as the fish receives the amino acid it needs it will grow and be healthy and the composition of its muscle protein is the same irrespective of the feed protein source. Consequently, feeding salmon with non-marine protein sources results in a net production of marine fish protein.

During the industry’s early phases, salmon feed was moist (high water content) with high levels of marine protein (60%) and low levels of fat/oil (10%). In the 1990s, the feed typically consisted of 45% protein, made up mostly of marine protein. Today, the marine protein level is lower due to cost optimisation and the availability of fish meal. However, the most interesting development has been the increasingly higher inclusion of fat. This has been possible through technological development and extruded feeds.

Source: www.nifes.no, Holtermann
Feed and feeding strategies aim to grow a healthy fish fast at the lowest possible cost. Standard feeds are designed to give the lowest possible production cost rather than maximised growth. Premium diets formulated for the best growth rate are being used in situations where the difference between sales price and production cost make these diets profitable.

Feeding control systems are used at all farms to control and optimise feeding. The feeding is monitored for each net pen to ensure that the fish is fed to maximise growth (measured by the Relative Growth Index - RGI). At the same time the systems ensure that feeding is stopped immediately when the maximum feed intake has been provided to prevent feed waste. The fastest growing fish typically also have the best (i.e. lowest) feed conversion ratio (FCR).
Fish oil: Since 2009 fish oil prices have steadily increased. The average price of fish oil was about USD 2 200 per tonne in 2016.

Fish meal: Fish meal has also seen an increasing trend in price. On average, fish meal has been more expensive, but over the last couple of years fish oil has surpassed fish meal on price.

Rapeseed oil: Up until 2011, rapeseed oil and fish oil had a correlating price development. However, in the last few years there has been a decreasing trend in the price of rapeseed oil.

Soy meal: Soy and corn have traditionally been very important vegetable protein sources in fish feed. As a consequence of demand from China increasing faster than the increase in soy production and more corn used for energy purposes, the price for soy meal (and other vegetable proteins) has increased. Parallel to this, there has been an increase in genetic modified (GM) production of soy and corn. Non-GM products have been sold with a premium making them more expensive. The average price in 2016 was USD 504 per tonne.

Wheat: Prices for wheat have remained stable over the years with generally good production and supply/demand in balance.

Source: Holtermann
Financial Considerations
Financial Considerations

9.1 Working capital

The long production cycle of salmon requires a significant working capital in the form of biomass.

Working capital investments are required to cater for organic growth, as a larger “pipeline” of fish is needed to facilitate larger quantities of harvest. On average, a net working capital investment of approximately EUR 2.2 is required to be invested the year prior to obtaining an increase in harvest volume of 1 kg. This requirement has increased over time, and fluctuates with variations in exchange currencies.

Net working capital varies during the year. Growth of salmon is heavily impacted by changing seawater temperatures. Salmon grows at a higher pace during summer/autumn and more slowly during winter/spring when the water is colder. As the harvest pattern is relatively constant during the year, this leads to a large seasonal variation in net working capital. Studies have shown that a variation of between EUR 0.2-0.4 per kg harvest volume should be expected from peak to bottom within a year. For a global operator, net working capital normally peaks around year end and bottoms around mid-summer.

Source: Marine Harvest
Financial Considerations

9.1 Working capital

For illustration purposes, the farming process has been divided into three stages of 12 months. The first 12 month period is production from egg to finished smolt. After this, 24 months of on-growing in the sea follows. After the on-growing phase is over, harvest takes place immediately (illustrated as “Month 37”). In a steady state there will at all times be three different generations at different stages in their life cycle. Capital expenditure is assumed equal to depreciation for illustration purposes. The working capital effects are shown above on a net basis excluding effects from accounts receivables and accounts payables.

At the point of harvest there have been costs to produce the fish for up to 36 months, some costs to produce the smolt two years ago, further costs incurred to grow the fish in seawater and some costs incurred related to harvest (“Month 37”). Sales price should cover the costs and provide a profit margin (represented by the green rectangle).

Cash cost in the period when the fish is harvested is not large compared to sales income, creating a high net cash flow. If production going forward (next generations) follows the same pattern, most of the cash flow will be reinvested into salmon at various growth stages. If the company wishes to grow its future output, the following generations need to be larger requiring even more of the cash flow to be reinvested in working capital.

This is a rolling process and requires substantial amounts of working capital to be tied up, both in a steady state and especially when increasing production

Source: Marine Harvest, Norges Bank
Financial Considerations

9.1 Working capital

The illustration above shows how capital requirements develop when production/biomass is being built from "scratch". In phase 1, there is only one generation (G) of fish produced and the capital requirement is the production cost of the fish. In phase 2, the next generation is also put into production, while the on-growing of G1 continues, rapidly increasing the capital invested. In phase 3, G1 has reached its last stage, G2 is in its on-growing phase and G3 has begun to increase its cost base.

At the end of phase 3, the harvest starts for G1, reducing the capital tied-up, but the next generations are building up their cost base. If each generation is equally large and everything else is in a steady state, the capital requirement would have peaked at the end of phase 3. With a growing production, the capital requirement will also increase after phase 3 as long as the next generation is larger than the previous (if not, the capital base is reduced). We see that salmon farming is a capital intensive industry.

To equip a grow-out facility you need cages (steel or plastic), mooring, nets, cameras, feed barge/automats and boats.

Source: Marine Harvest
Financial Considerations

9.2 Capital return analysis

Investments and payback time (Norway) - assumptions

Normal site consisting of 4 licenses

- Equipment investment: MEUR 3.5 - 4.5
- Number of licenses: 4
- License cost (second hand market) MEUR: 28 - 40 (~MEUR 7 - 10 per license)
- Output per generation: ~4 000 tonnes GWE
- Number of smolt released: 1 000 000

Smolt cost per unit: EUR 1
- Feed price per kg: EUR 1.3 (LW)
- Economic feed conversion ratio (FCR): 1.2 (to Live Weight)
- Conversion rate from Live Weight to GWE: 0.84
- Harvest and processing incl. well boat cost per kg (GWE): EUR 0.4

Average harvest weight (GWE): 4.5kg
- Mortality in sea: 10%

Sales price: EUR 5/kg

To increase capacity there are many regulations to fulfil.

In this model, we focus on a new company entering the industry and have used only one site for simplicity. Most companies use several sites concurrently, which enables economies of scale and makes the production more flexible and often less costly.

Also for simplicity, in this model smolts are bought externally. Smolts are usually less costly to produce internally, but this depends on production quantity.

The performance of the fish is affected by numerous factors including feeding regime, sea water temperature, disease, oxygen level in water, smolt quality, etc.

The sales price reflects the average sales price from Norway over the last five years.

Source: Marine Harvest, Kontali Analyse, Norges Bank
Financial Considerations
9.2 Capital return analysis

Results
Because of the simplifications in the model and the low, non-optimal production regime, production costs are higher than the industry average. Due to high entry barriers in terms of capital needs and falling production costs with quantity, new companies in salmon production will experience higher average production costs. During the production of each harvest the working capital needed at this farm, given the assumptions, would be peaking at around MEUR 8.8 (given that the whole harvest is harvested at the same time).

With a sales price at the average level in the period 2012-2016, payback time for the original investments would be around 9 years. This result is very sensitive to sales price, license cost and economic feed conversion ratio (FCR).

The sales price of EUR 5/kg is based on the average price in Norway in the 5-year period 2012-2016.

Source: Marine Harvest
9.3 Currency overview

Exporters deal in the traded currency, while the customer has an exposure to both. For example a Russian processor trades salmon in USD, but they sell their products in the local currency, rubles (RUB).

Most Norwegian producers are exposed to currency fluctuations as the majority of the salmon they produce is exported. Most of the salmon is exported to countries within the EU and traded in EUR. The second largest traded currency is USD. Some players in countries in Eastern Europe, the Middle East and some Asian countries prefer to trade salmon in USD rather than in local currency.

The price of salmon quoted in traded currency will compete with other imported goods, while the price of salmon quoted in local currency will compete with the price to consumers of products that are produced domestically.

There is a currency risk involved in operating in different currencies, and therefore many of the largest industry players hedge currencies often with back-to-back contracts. The currency risk arising from salmon sales denominated in the traded currency is usually absorbed by the exporter, while the currency risk in local currency is absorbed by the customer.

Source: Kontali
Financial Considerations

9.3 Currency overview

Exposure against local currency – Developments 2012-2016

<table>
<thead>
<tr>
<th>Source</th>
<th>Kontali</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: (1)</td>
<td>The table shows exposure against local currency weighted against total exports</td>
</tr>
</tbody>
</table>

Europe is the largest market for Norwegian produced salmon, so EUR is the predominant currency for Norwegian salmon producers. Russia is an important salmon market, however, due to the trade sanctions the exposure to the Russian RUB is limited. Other markets have therefore recently increased its direct exposure.

Key markets for Chilean produced salmon are the USA and Brazil, so exposure to USD and BRL (Brazilian real) in local currency terms is followed closely. The exposure to RUB has increased over the years as the Russian market has become more important for Chilean exporters.

Feed production: Currency exposure

The raw materials required to produce feed is as a rule of thumb quoted in USD (approx 70%) and EUR (approx 30%), based on long term average exchange rates. The raw materials generally account for 85% of the cost of producing feed. The remaining costs, including margin for the feed producer, are quoted in local currency.

Secondary Processing: Currency exposure

The biggest market for value added products is Europe, hence the vast majority of currency flows are denominated in EUR, both on the revenue and cost side. In the US and Asian processing markets currency flows are denominated largely by USD and EUR on the revenue side whilst costs are denominated in USD, EUR and local currency.
A falling trend in the price of salmon from 1993-2004 was due to supply growth being higher than the structural growth in demand.

As a result of the cost benefits of industrialisation, consolidation and economies of scale, combined with improvements in the regulatory framework and fish health improvements, the cost curve also had a falling trend in this period.

In the last decade product innovation, category management, long term supply contracts, effective logistics and transportation has stimulated strong demand growth for salmon, in particular in the European markets. In recent years, costs have trended upwards due to several factors including rising feed costs, biological costs and more stringent regulatory compliance procedures.

The average EBIT per kg for the Norwegian industry has been positive with the exception of a few shorter periods. The last 10 years it has been EUR 1.1 per kg in nominal terms (EUR 1.2 per kg the last 5 years).

Source: Kontali Analyse, Norges Bank, Bloomberg, NOK has been converted to EUR using the historical yearly foreign exchange rate found in the Appendix.
Financial Considerations

9.5 Effects of geographical diversification

The illustration above depicts Marine Harvest’s performance across different countries over the last 5 years. In all regions, the biological risk is high and this impacts cost significantly from period to period. The variance in EBIT per kg is high, however, the geographic specific risk can be diversified with production across regions.

Source: From 2012 to 2014 has NOK been converted to EUR using the historical yearly foreign exchange rate found in the Appendix.
10

Barriers to Entry - Licenses
Due to biological constraints, seawater temperature requirements and other natural constraints, farmed salmon is only produced in Norway, Chile, UK, the Faroe Islands, Ireland, North America, New Zealand and Tasmania.

Atlantic salmon farming began on an experimental level in the 1960s but became an industry in Norway in the 1980s and in Chile in the 1990s.

In all salmon producing regions, the relevant authorities have a licensing regime in place. In order to operate a salmon farm, a license is the key prerequisite. The licenses constrain the maximum production for each company and the industry as a whole. The license regime varies across jurisdictions.
10 Barriers to Entry – Licenses

10.1 Regulations of fish farming in Norway

License and location
Fish farming companies in Norway are subject to a large number of regulations. The Aquaculture Act (17 June 2005) and the Food Safety Act (19 December 2003) are the two most important laws, and there are detailed provisions set out in several regulations which emanated from them.

In Norway, a salmon farming license allows salmon farming either in freshwater (smolt/fingeling production) or in the sea. The number of licenses for Atlantic salmon and trout in sea water was limited to 990 licenses in 2016. Such limitations do not apply for licenses in fresh water (smolt production), which can be applied for at any time. Farming licenses in sea water can use up to four farming sites (six sites are allowed when all sites are connected with the same licenses). This increases the capacity and efficiency of the sites.

New licenses in the sea are awarded by the Norwegian Ministry of Trade, Industry and Fisheries and are administered by the Directorate of Fisheries. Licenses can be sold and pledged, and legal security is registered in the Aquaculture Register. Since 1982, new licenses have been awarded only in limited years. In 2013, Norwegian authorities announced a plan to issue 45 new “green” licenses. These were awarded in 2014 and Marine Harvest Norway AS was granted one license. Licenses last in perpetuity, but may be withdrawn in case of a material breach of conditions set out in the license or in the aquaculture or environmental legislation.

The production limitations in Norway are regulated as "maximum allowed biomass" (MAB), which is the defined maximum volume of fish a company can hold at sea at all times. In general, one license sets a MAB of 780 tons (945 tons in the counties of Troms and Finnmark). The sum of the MAB permitted by all the licenses held in each region is the farming company's total allowed biomass in this region. In addition, each production site has its own MAB and the total amount of fish at each site must be less than this set limit. Generally, sites have a MAB of between 2.340 and 4.680 tons.

The Norwegian Government announced revised aquaculture regulations in January 2017 with the intention of securing sustainable growth of the industry. As the parliament decided in 2015, the coast is divided into 13 areas of production. Possible future growth or reduction will be based on the level of sea lice in an area. The new areas will be implemented on 1 October 2017, and there will be an opportunity to increase the production from that point depending on the level of sea lice. Any reduction in production capacity will not be imposed before 2019. If the criteria for growth are satisfied, the production areas may grow by a maximum of 6% per every two years.
Barriers to Entry – Licenses

10.1 Regulations of fish farming in Norway

Access to licenses

Until November 2015, an industry player had to apply for approval from the Government if they got control of more than 15% of the total licenced biomass in Norway. Such approval could be given if specific terms regarding the applicant’s R&D activity, fish processing and apprenticeships in coastal regions were met. This act on ownership limitation was removed in November 2015 but it is still the case that no one company in the industry can control more than 50% of the total biomass in any of the regions of the Directorate of Fisheries.

The figure below depicts an example of the regulatory framework in Norway for one company:

- Number of licenses for a defined area: 5
 - Biomass threshold per license: 780 tonnes live weight (LW)
 - Maximum biomass at any time: 3,900 tonnes (LW)
- Number of sites allocated is 3 (each with a specific biomass cap)
 In order to optimise the production and harvest quantity over the generations of salmon, the license holder can operate within the threshold of the three sites as long as the total biomass in sea never exceeds 3,900 tonnes (LW).
- There are also biomass limitations on the individual production sites. The biomass limitation varies from site to site and is determined by the carrying capacity of the site.
Barriers to Entry – Licenses

10.1 Regulations of fish farming in Norway

The graph above shows the harvest per license in 2016 for the Norwegian industry as a whole and for the largest listed companies. The graph is organized by highest harvest quantity.

Because of the regulation of standing biomass (maximum allowed biomass - MAB) per licence (780 tonnes LW), the production capacity per licence is limited. Annual harvest quantity per license in Norway is currently at about 1 200 tonnes GWE. Larger players typically have better flexibility to maximise output per license which means that the average harvest figure for the industry as a whole is lower than the figure for the largest companies.

Number of grow-out sea water licenses for salmon and trout in Norway:

- 2007: 929
- 2008: 916
- 2009: 988
- 2010: 991
- 2011: 990
- 2012: 963
- 2013: 959
- 2014: 973
- 2015: 974
- 2016: 990

Source: Marine Harvest, Quarterly reports Q4-16, Directorate of Fisheries
The maximum production of each industry player is set by the company’s total MAB. However, the production varies due to productivity, fish health, sea temperature and other conditions. The total production of salmon and trout in Norway has increased over recent years. New “green” licenses\(^1\), have also been introduced and represent an increase of approximately 4.5% in the total product.

In June 2015 the Norwegian Government announced a five percent growth opportunity for all existing licenses. There were strict conditions attached to the offer, and the maximum sea lice level was set to an average of 0.2 sea lice per fish. The growth opportunity was priced at NOK 1 million per license. Marine Harvest applied for 22 licences, all for sites in Agder and Troms.

In 2017 the total MAB capacity is expected to gradually increase mainly due to the implementation of previously announced green licenses and gradual approvals of development license applications.

Source: Kontali Analyse

Note: The primary aim of the new “green” licenses is to stimulate the use of environmentally friendly technology for commercial use.
10 Barriers to Entry – Licenses

10.1 Regulations of fish farming in Norway

Closed production in sea

Marine Harvest has applied for licenses for three different systems for closed production in the sea. The Egg (A) is 44 meters high and 33 meters wide, and 90% of the structure will be underwater. The Marine Donut (B) is 22,000 m³ with high circulation. Salmon farming in rebuilt bulkships (C) with 70,000 m³ fish tank volume, is designed for more open waters.

In November 2015 the Norwegian Government announced a new category of licence. Development licenses are intended to motivate investment into new farming technologies. Development licences allocated are free of charge for up to 15 years. After that if the project is carried out in line with the set criteria, the licences could be converted into commercial licences at a cost of NOK 10 million.

By 1 May 2017, 56 concept applications had been submitted, out of which three have been approved and 11 denied. The concepts mainly vary in their exposure to the sea, open vs. closed structure, and between submerged and unsubmerged solutions.

So far Marine Harvest has applied for four different projects with a total of 34 licences. So far The Norwegian Directorate of Fisheries has decided that “The Egg” and “Marine Donut” concepts qualify for the development license scheme.

Source: Directorate of Fisheries
Barriers to Entry – Licenses

10.2 Regulations of fish farming in Scotland

License and location
In Scotland, instead of a formal license, permission is required from three institutions before setting up a fish farming site; Planning Permission from local regional Council, a Marine Licence from Marine Scotland and a discharge license from the Scottish Environment Protection Agency (SEPA). Maximum Allowed Biomass (MAB) for individual sites is determined based on the environmental concerns, namely the capacity of the local marine environment to accommodate the fish farm. As a consequence, MAB for salmon farms is not uniform and varies between 100 tons to 2,500 tons depending on site characteristics and its geographic location.

Access to licenses
In Scotland it is legal to trade licenses and although no restriction on number is given, there is a limit on production quantity ascribed to any one company. This limit is determined by the Competition Commission Authorities. Licensing aquaculture operations in the UK is currently in a transitory state; all new applications require planning application for permission to operate, as long as SEPA and Marine Scotland consent. The granting of the planning permission is aligned to the Crown Estate lease for a 25 year period. All existing fish farm leases without planning permission in Scotland are currently undergoing a review process which will transfer them from the Crown Estate to local regional councils who will automatically grant a 25 year lease. Sites with Planning Permission are not required to go through this review process.

The environmental license can be revoked in cases of significant and long-term non-compliance.

Most existing licenses are automatically renewed at the end of their lease period.

New license applications take around 6-12 months for the planning permission and around 4-6 months for the environmental discharge license. Expansion of existing facilities is the most efficient route in terms of cost and time, whilst brand new sites will take longer and have to go through an Environmental Impact Assessment (EIA) process. The environmental license is charged annually at around GBP 9,000, whilst the standing rent is levied to the Crown Estate on the basis of production levels as follows: GBP 22.50 per tonne harvested for Mainland sites; GBP 20.50 per tonne for Western Isles sites; GBP 1,000 annual charge if no harvesting; GBP 2,000 annual charge if dormant. However a year on year increase to the dormancy charge is being introduced to encourage the use of dormant sites. The applications are also charged at GBP 174 per 0.1 hectare of farm area, while the environmental license costs GBP 4,000 for a new site.
10.3 Regulations of fish farming in Chile

License and location
In Chile the licensing is based on two authorisations. The first authorisation is required to operate an aquaculture facility and specifies certain technical requirements. It is issued by the Fishery Sub Secretary (Economy Ministry) and is granted for an unlimited time and can be traded. From August 2016 a time limit has been set and licenses must be used or they will expire. The second authorisation relates to the physical area which may be operated (or permission to use national sea areas for aquaculture production). This is issued by the Sub Secretary of the Navy (Defence Ministry). The use of the license is restricted to a specific geographic area, to defined species, and to a specified limit of production or stocking density. The production and stocking density limit is specified in a Environmental and Sanitary Resolution for the issued license and according to new regulations issued during 2016, density may depend on production, sanitary and environmental conditions. For Atlantic salmon, density ranges from 8 to 17 kg/m³.

Access to licenses
The trading of licenses in Chile is regulated by the General Law on Fisheries and Aquaculture (LGPA), in charge of Ministry of Economy and Defense. Aquaculture activities are subject to different governmental authorisations depending on whether they are developed in private fresh water inland facilities (i.e. hatcheries) or in facilities built on public assets such as lakes or rivers (freshwater licenses) or at sea (sea water licenses).

To operate a private freshwater aquaculture facility requires ownership of the water use rights and holding of environmental permits. Environmental permits are issued when operators demonstrate that their facilities comply with the applicable environmental regulations.

Licenses for aquaculture activities in lakes, rivers and seawater are granted based on an application, which must contain a description of the proposed operations, including a plan for complying with environmental and other applicable regulations. Licenses granted after April 2010 are granted for 25 years and are renewable for additional 25-year terms. Licenses granted before April 2010 were granted for indefinite periods. License holders must begin operation within one year of receiving a license and once the operation has started, the license holder cannot stop or suspend production for a period exceeding two consecutive years. Subject to certain exceptions, license holders must maintain minimum operational levels of not less than 5% of the yearly production specified in the RCA (Resolución de Calificación Ambiental). Until August 2016, all licenses not used could be kept by the holder if they prepared an official Sanitary Management Plan. Now however operations must begin within a time frame of 3-4 years or the license will expire.

License holders must pay annual license fees to the Chilean government and may sell or rent their license. At the moment, no new licenses will be granted in the most concentrated regions, Regions X, XI, and XII (Chile is made up of 15 administrative regions).
License and location: British Columbia

In British Columbia, authorisation is required at both Federal and Provincial level to operate a marine fish farm site. The Federal Government regulates the activity and operations of aquaculture and the Provincial Government administers the Crown lands where fish farms are located. The Province grants a tenure license to occupy an area of the ocean associated with the individual fish farming site. A tenure area encompasses the rearing pens, ancillary infrastructure and moorings. Individual site tenures have a specific timeline ranging from five to twenty years. The term of tenure is based upon the provincial policy at the time of offer. In 2017, the annual fee for a typical 30 hectares tenure is $12,600 cad. This rental fee is calculated based on the tenure size and a provincially indexed land value. Each tenure license contains a renewal provision once expired. It is uncommon for a tenure to not be renewed, however breaches to a tenure agreement can fetter the renewal processes.

The Federal Government grants an Aquaculture License that incorporates several conditions which a farm must observe. The Aquaculture license conditions are linked and conform to The Federal Fisheries Act. Aquaculture license conditions regulate production parameters including the species being farmed, the Maximum Allowable Biomass (MAB) on the site, the use of rearing equipment and the allowable environmental impact. Production or “MAB” is specific to each Aquaculture licensed facility. Smaller farms are typically licensed for 2,200mt. MAB with larger capacity facilities licensed to produce 5,000 mt. per cycle. Since December 2016, Federal Licenses are issued for a six year period. The annual Federal Aquaculture License fee is calculated at $2.55 cad per licensed metric ton of MAB for operational sites - facilities that are fallow pay a $100 CAD licensing fee. All Aquaculture licenses are renewable but may be lost or suspended for non-compliance issues and non-payment of fees.
Access to licenses: British Columbia

All acquisitions of authorisations and licenses require consultation with First Nations and local stakeholders. The time taken to acquire licenses for a new farm varies from one to several years. The cost for preparing a new site license application can range from $200,000 - $300,000 cad. Recently the Provincial government instituted a moratorium on new site applications but has allowed existing sites to amend their tenure size and infrastructure based on specific conditions. Companies can still obtain new tenures by relocating existing tenures to locations “more suitable for safety or matters of public interest.” The Federal Government has harmonized its licensing process with the Province and offers amendments to existing licenses in lieu of new licenses.

Provincial tenures and Federal licenses can be assigned to a different operator through a government assignment process. A company may transfer licenses to another company providing the rationales for the assignment are supported by the government processes. Several licenses and tenures have been transferred by companies in British Columbia siting changes to species production, distance to market, processing or company ownership.
License and location: Newfoundland

The Provincial government is the primary regulator and leasing authority in Newfoundland. The Province regulates the activity and operations of aquaculture, and administers the Crown lands where fish farms are located. The Department of Environment and Conservation grants a Lease for Aquaculture to occupy an area of the land/ocean associated with the individual fish farming site. They also issue a Water Use License/Permit that authorises the producer to install and operate the facility in the water. A Lease for Aquaculture encompasses the rearing pens, ancillary infrastructure and moorings. Individual site leases are typically granted for 50 years. In 2017, the annual fee for typical 30 hectares tenure is $8/ha cad. The fee is reviewed every five years and may increase (at that time) at a value not to exceed 100%. Leases must be used for aquaculture at least once every 2 years. The Water Use License/Permit remains in force as long as the site is issued an Aquaculture License, provided the proponent meets all conditions listed in the permit. There is a one-time fee for this of $400 cad, and annual fees for water use of $1,000 cad.

The Department of Fisheries and Aquaculture (Provincial Government) grants an annual Aquaculture License that incorporates several conditions which a farm must observe. In 2017, the annual fee is $145/ha cad. Conditions are linked to the Aquaculture Code of Containment (Newfoundland) and all Federal regulations as listed below. The Aquaculture License also stipulates conditions for fish transfer through the Aquatic Animal Health Division, and prescribes specific Bay Management Areas Agreements for the South Coast of Newfoundland. Annual statistics are reported as part of the renewal process. Production or “MAB” is specific to each licensed facility as per the original application submitted to the Department of Fisheries and Aquaculture. Farms are typically licensed for 2,500 to 5,000 mt. per cycle. All Aquaculture licenses are renewable but may be lost or suspended for non-compliance issues and non-payment of fees.

There are fees for government wharfs set at $2,000 cad/wharf/year.
10 Barriers to Entry – Licenses

10.4 Regulations of fish farming in Newfoundland, Canada

The Federal Government is responsible for navigation, disease prevention affecting international trade, and the environment under the Fisheries Act, Navigable Waters Act, Health of Animals Act and the National Aquaculture Activities Regulation (AAR). The AAR allows an operator to deposit BOD matter (feed, faeces and biofouling organisms), registered drugs and pest control products (eg. SLICE). There are threshold limits for BOD and mandatory reporting for the deposit of BOD (benthic waste footprint), drugs and pest control products. Transport Canada (Federal) issues a 5-year Navigable Waters Protection Act approval for each site, provided there are no concerns for marine traffic/transportation.

Access to licenses: Newfoundland

Proponents must submit an “Aquaculture Licensing Process for Sea Cage Sites” application to the Newfoundland Department of Fisheries and Aquaculture (DFA) for each new or acquired marine site. Application fees are $150 for new sites, and $200 dollars for acquired sites. The DFA refers the applicants' information to all other agencies. It takes about nine months to transition an existing site to a new owner, and approximately one year for a new application. This includes obtaining an Aquaculture License; Water Use License, Crown Lease and Navigable Protection Act approval. The Department of Fisheries and Oceans (Federal) also reviews the applications to ensure that the site would meet AAR and Fisheries Act requirements. In addition, a formal Risk Assessment is completed with respect to the National Code on Introductions and Transfers of Aquatic Organisms by the proponent and the Introductions and Transfers Committee (both Federal and Provincial). Consultation with local residents, towns, development groups and commercial/recreational fishermen is required. The cost for preparing a new site license application is estimated at $80,000 - $120,000 cad.

Applicants can apply for a one year “Site Hold” to the DFA. This allows the proponent to complete the necessary work to submit a full application. There is a $1,000 fee for this. All new sites of the same company must be 1 km apart, 5 km if sites are operated by different companies.

Provincial approvals can be assigned to a different operator through a government assignment process. A company may transfer licenses to another company providing the rationales for the assignment are supported by the government processes.
10 Barriers to Entry – Licenses

10.4 Regulations of fish farming in New Brunswick, Canada

License and location: New Brunswick

The Provincial government is the primary regulator and leasing authority in New Brunswick. The Province regulates the activity and operations of aquaculture, and administers the Crown lands where fish farms are located. The Department of Natural Resources grants a Marine Aquaculture Lease to occupy an area of the ocean associated with the individual fish farming site. The Marine Aquaculture Lease encompasses the rearing pens, ancillary infrastructure and moorings. Individual site leases are typically granted for 20 years. In 2017, the annual fee is $250/ha cad. Leases are subject to the provisions of the provincial Aquaculture Act. The Department of Environment issues a Marine Finfish Aquaculture Approval to Operate that oversees production and harvest activities, waste management, chemical storage, environmental quality limits (benthic performance thresholds), infrastructure integrity, and reporting. The approval is typically issued for three years.

The Department of Agriculture, Aquaculture and Fisheries (Provincial Government) grants a 3-year Commercial Aquaculture License that incorporates several conditions which a farm must observe. In 2017, the annual fee is $50/year cad. Conditions are linked to the Aquaculture Act and all applicable federal/provincial legislation. The Commercial Aquaculture License also stipulates conditions for fish transfer through the Aquatic Animal Health Division, and prescribes specific Aquaculture Bay Management Areas. Annual statistics are reported as part of the renewal process. Production or “MAB” is specific to each licensed facility as per the original application submitted to the Department of Agriculture, Aquaculture and Fisheries. Farms are typically licensed for 270,000 to 350,000 fish per cycle. All Commercial Aquaculture Licenses are renewable but may be lost or suspended for non-compliance issues and non-payment of fees.
Barriers to Entry – Licenses

10.4 Regulations of fish farming in New Brunswick, Canada

The Federal Government is responsible for navigation, disease prevention affecting international trade, and the environment under the Fisheries Act, Navigable Waters Act, Health of Animals Act and the National Aquaculture Activities Regulation (AAR). The AAR allows an operator to deposit BOD matter (feed, faeces and biofouling organisms), registered drugs and pest control products (example, SLICE). There are threshold limits for BOD and mandatory reporting for the deposit of BOD (benthic waste footprint), drugs and pest control products. Transport Canada (Federal) issues a 5-year Navigable Waters Protection Act approval for each site, provided there are no concerns for marine traffic/transportation.

Access to licenses: New Brunswick

Companies must submit an Aquaculture License Application for Marine Sites to the Department of Agriculture, Aquaculture and Fisheries (New Brunswick) for each new or acquired marine site. The DAAF refers the applicants’ information to all other agencies. It takes about nine months to transition an existing site to a new owner, and approximately one year for a new application. This includes obtaining a Commercial Aquaculture License; Approval to Operate, Marine Aquaculture Lease and Navigable Protection Act approval. The Department of Fisheries and Oceans (Federal) also reviews the applications to ensure that the site would meet AAR and Fisheries Act requirements. Fees are $10cad for lease applications. Consultation with local residents, towns, development groups and commercial/recreational fishermen is required. The cost for preparing a new site license application ranges from $80,000 - $120,000 cad.

Provincial approvals can be assigned to a different operator through a government assignment process. A company may transfer licenses to another company providing the rationales for the assignment are supported by the government processes.
Risk Factors
11 Risk Factors

11.1 Salmon disease prevention and treatment

Maximising survival and maintaining healthy fish stocks are primarily achieved through good husbandry and health management practices and policies. Such practices, in addition, reduce exposure to pathogens and the risk of health challenges. The success of good health management practices has been demonstrated on many occasions and has contributed to an overall improvement in the survival of farmed salmonids.

Fish health management plans, veterinary health plans, biosecurity plans, risk mitigation plans, contingency plans, disinfection procedures, surveillance schemes as well as coordinated and synchronised zone/area management approaches, all support healthy stocks with emphasis on disease prevention.

Prevention of many diseases is achieved through vaccination at an early stage and while the salmon are in freshwater. Vaccines are widely used commercially to reduce the risk of health challenges. With the introduction of vaccines a considerable number of bacterial health issues have been effectively controlled, with the additional benefit that the quantity of medicine prescribed in the industry has been reduced.

In some instances however medicinal treatment is required to maximize the chance of survival and even the best managed farms may use medicines from time to time. For several viral diseases, no effective vaccines are currently available.
11 Risk Factors

11.2 Most serious health risks to salmon

Sea lice: There are several species of sea lice, which are naturally occurring seawater parasites. They can infect the salmon skin and if not controlled they can cause lesions and secondary infection. Sea lice are controlled through good husbandry and management practices, the use of lice prevention barriers (e.g. skirts), cleaner fish (different wrasse species and lumpsuckers, which eat the lice off the salmon), mechanical removal systems and when necessary licensed medicines.

Pancreas Disease (PD): PD is caused by the Salmonid Alphavirus and is present in Europe. It is a contagious virus that can cause reduced appetite, muscle and pancreas lesions, lethargy, and if not appropriately managed, elevated mortality. PD affects Atlantic salmon and rainbow trout in seawater and control is achieved mainly by management and mitigation practices. Combined with these measures, vaccination is also used where PD represents a risk and which provides some additional level of protection.

Salmonid Rickettsial Septicaemia (SRS): SRS is caused by an intracellular bacteria. It occurs mainly in Chile but has also been observed, but to a much lesser extent, in Norway, Ireland and the UK. It causes lethargy, appetite loss and can result in elevated mortality. SRS is to some extent controlled by vaccination, but medicinal intervention (licensed antibiotics) may also be required.

Infectious Pancreatic Necrosis (IPN): IPN is caused by the IPN virus and is widely reported. It is a contagious virus that can cause mortality if not managed appropriately. IPN can affect Atlantic salmon fry, smolts and larger fish post-transfer. Available vaccines can protect against IPN and good results are obtained by optimizing husbandry and biosecurity measures. In addition, using IPN resistant fish (QTL-based fish selection) has contributed significantly to reducing the incidence of IPN.

Heart and Skeletal Muscle Inflammation (HSMI): HSMI is currently reported in Norway and Scotland. Symptoms of HSMI are reduced appetite, abnormal behaviour and in most cases low mortality. HSMI generally affects fish in their first year in seawater and control is achieved mainly by good husbandry and management practices.

Infectious Salmon Anaemia (ISA): ISA is caused by the ISA virus and is widely reported. It is a contagious disease that causes lethargy, anaemia and may lead to significant mortality in seawater if not appropriately managed. Control of an ISA outbreak is achieved through culling or harvesting of affected fish in addition to other biosecurity and mitigation measures. Vaccines are available and in use in areas where ISA is considered to represent a risk.

Gill Disease (GD): GD is a general term used to describe gill conditions occurring in seawater. The changes may be caused by different infectious agents; amoeba, virus or bacteria, as well as environmental factors including algae or jelly-fish blooms. Little is known about the cause of many of the gill conditions and to what extent infectious or environmental factors are primary or secondary causes of disease.
The increase in production of Atlantic salmon in Norway in the 1980s resulted in an increase of disease outbreaks. In the absence of effective vaccines, the use of antibiotics reached a maximum of almost 50 tonnes in 1987. With the introduction of effective vaccines against the main health challenges at that time, the quantities of antibiotics used in the industry declined significantly to less than 1.4 tonnes by 1994 and has since then continued to be very low. These developments, along with the introduction of more strict biosecurity and health management strategies, allowed for further expansion of the industry and an increase in production.

During the last two decades there has been a general stabilisation of mortality in Norway, Scotland and Canada, which has been achieved principally through good husbandry, management practices and vaccination. The trend in Chile in recent years stems from infection pressure from SRS in the industry and insufficient protection offered by today’s vaccines against SRS.

Source: Kontali Analyse, Norsk medisinaldepot, Norwegian Institute of Public Health
11 Risk Factors
11.4 Research and development focus

Fish Welfare and Robustness
- Development of better solutions for prevention and control of infectious diseases
- Minimization of production-related disorders
- Optimisation of smolt quality
- Development of cost effective, sustainable and healthy salmon diets which ensure production of robust fish
- Identify the best harvesting methods, fillet yield optimisation and the most efficient transport and packaging solutions
- Net solutions and antifouling strategies

Product Quality and Safety
- Continuously develop better technological solutions for optimised processing, packaging and storage of products, while maintaining a consistent high quality.
- Minimization of production-related disorders
- Optimisation of smolt quality
- Development of methods to reduce production time at sea
- Production in exposed areas
- Production in closed sea-going units
- Identify the best harvesting methods, fillet yield optimisation and the most efficient transport and packaging solutions
- ASC implementation; Undertake R&D projects that will facilitate and make ASC implementation more effective

New Growth
- Development of methods to reduce production time at sea
- Production in exposed areas
- Production in closed sea-going units

Production Efficiency

According to Zacco (Norwegian patenting office), the rate of patenting in the salmon farming industry has grown rapidly in the last two decades. Considerable R&D is undertaken in several areas and the most important developments have been seen in the feed and vaccine sectors, carried out by large global players. In this industry the majority of producers are small and do not have the capital to undertake and supervise major R&D activities. This is expected to change as consolidation of the industry continues.

Smolt, on-growing production and processing
The technology used in these phases can be bought "off the shelf" and very few patents are granted. Technology and producers are becoming increasingly more advanced and skilled.
12

Indicators Determining Harvest Volumes
12 Indicators Determining Harvest Volumes

12.1 Projecting future harvest quantities

The three most important indicators for future harvest quantities are standing biomass, feed sales and smolt release. These three are good indicators for medium term and long term harvest, while the best short term indicator is standing biomass categorized by size. As harvested size is normally above 4 kg, the available quantity of this size class is therefore the best estimate of short term supply.

If no actual numbers on smolt releases are available, vaccine sales could be a good indicator of number of smolt releases and when the smolt is put to sea. This is a good indicator on long term harvest as it takes up to 2 years before the fish is harvested after smolt release.

Variation in seawater temperature can materially impact the length of the production cycle. A warmer winter can for example increase harvest quantities for the relevant year, partly at the expense of the subsequent year.

Disease outbreaks can also impact the harvest quantity due to mortality and slowdown of growth.
Yield per smolt is an important indicator of production efficiency. Due to the falling cost curve and the discounted price of small fish, the economic optimal harvest weight is in the area of 4-5 kg (GWE). The number of harvested kilograms yielded from each smolt is impacted by diseases, mortality, temperatures, growth attributes and commercial decisions.

The average yield per smolt in Norway is estimated at 3.36 kg (GWE) for the 15 Generation.

Since 2010, the Chilean salmon industry has been rebuilding its biomass after the depletion caused by the ISA crisis which began in 2007. In 2010/11, the Chilean salmon industry showed a very good performance on fish harvested due to the low density of production (improved yield per smolt). In line with the increased density, biological indicators have deteriorated significantly in 2012-14. Average yield per smolt for 15G is estimated at 2.89 kg (GWE).

Average yield in the UK, North America and Faroe Islands for 15G is estimated at 2.98kg, 4.43kg and 4.89kg, respectively.

Source: Kontali Analyse, Marine Harvest
Indicators Determining Harvest Volumes

12.3 Development in biomass during the year

Due to variations in sea water temperature during the year, the total standing biomass in Europe has a S-curve, which is at its lowest in May and at its peak in October. The Norwegian industry is focused on minimising the natural fluctuations as license constraints put a limit to how much biomass can be in sea at the peak of the year.

In Chile the situation is different due to more stable seawater temperatures and opposite seasons (being in the Southern hemisphere). A more steady water temperature allows the possibility of releasing smolts during the whole year and gives a more uniform utilisation of the facilities. The relatively low standing biomass in Chile from March 2016 is due to the impact of an algae bloom.

Source: Kontali Analyse
Secondary Processing (VAP)
Secondary Processing (VAP)

In processing we distinguish between primary and secondary processing.

Primary processing is slaughtering and gutting. This is the point in the value chain at which standard price indexes for farmed salmon are set.

Secondary processing is filleting, fillet trimming, portioning, producing different cuts like cutlets, smoking, making ready meals or Packing with Modified Atmosphere (MAP).

Products that have been secondary processed are called value-added products (VAP).
13 Secondary Processing (VAP)
13.1 European value-added processing (VAP) industry

- A total value of > EUR 25 billion
- Employees > 135,000
- Extremely fragmented – more than 4,000 companies
- About 50% of all companies have less than 20 employees
- Traditionally the EBIT-margins have been between 2% and 5%
- The average company employs 33 people and has a turnover of EUR 4.2 million

The seafood industry in Europe is fragmented with more than 4,000 players. Most of the companies are fairly small, but there are also several companies of significant size involved in the secondary processing industry: Marine Harvest, Icelandic Group, Young’s Seafood, Deutsche See, Caladero, Royal Greenland, Labeyrie, and Lerøy Seafood.

Most of the largest players are basing their processing on Atlantic salmon, producing smoked salmon, portions or ready meals with different packing techniques such as vacuum or modified atmosphere (MAP).

Consumers are willing to pay for quality and value added. This means that we are expecting to see an increase in demand for convenience products such as ready-to-cook fish, together with a packing trend towards MAP as this maintains the freshness of the product longer for than fish sold in bulk.
In the EU, around 70% of the Atlantic salmon supply went to retailers and approximately the same share was sold fresh. Of the different products, fillets have the largest market share of 45% followed by smoked. Other VAP consists of all value added processed products, except smoked salmon.

Source: Kontali Analyse

Note: Horeca = Hotel, restaurants and café (or establishments which prepare and serve food and beverages)
13 Secondary Processing (VAP)

13.3 The European market for smoked salmon

Smoked salmon is the most common secondary processed product based on Atlantic salmon. The European market for smoked salmon was estimated to be 323,100 tonnes GWE in 2016, with Germany and France the largest markets. The amount of raw material needed for this level of production was around 340,900 tonnes GWE.

European smoked salmon producers (2016E)
The ten largest producers of smoked salmon in Europe are estimated to have a joint market share of more than 60%. The production is mainly carried out in Poland, France, the UK, the Baltic states and the Netherlands.

Marine Harvest has its smoked salmon production in Poland (Morpol), UK (Rosyth), France (Kritsen) and Belgium (La Couronne), and its main markets are Germany, France, Italy and Belgium. After the acquisition of Morpol in 2013, Marine Harvest became the largest producer of smoked salmon. Labeyrie is the second largest and sells most of its products to France, and has also significant sales to the UK, Spain, Italy and Belgium.

<table>
<thead>
<tr>
<th>Estimated Annual Raw Material - Tonnes HOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 - 90 000</td>
</tr>
<tr>
<td>Lerøy (NL-SE-NO)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Source: Kontali Analyse
Appendix

In this appendix you can find explanation of key words, as well as information about the Marine Harvest group such as key financial numbers and the company’s history together with information about our upstream and downstream operations.
Appendix
Weight conversion ratios and key words

<table>
<thead>
<tr>
<th></th>
<th>Atlantic salmon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live fish</td>
<td>100%</td>
</tr>
<tr>
<td>Loss of blood/starving</td>
<td>7%</td>
</tr>
<tr>
<td>Harvest weight / Round bled fish (WFE)</td>
<td>93%</td>
</tr>
<tr>
<td>Offal</td>
<td>9%</td>
</tr>
<tr>
<td>Gutted fish, approx. (GWE)</td>
<td>84%</td>
</tr>
<tr>
<td>Head, approx.</td>
<td>7%</td>
</tr>
<tr>
<td>Head off, gutted</td>
<td>77%</td>
</tr>
<tr>
<td>Fillet (skin on)</td>
<td>56 - 64%</td>
</tr>
<tr>
<td>C-trim (skin on)</td>
<td>60%</td>
</tr>
<tr>
<td>Fillet (skin off)</td>
<td>47 - 56%</td>
</tr>
</tbody>
</table>

Net weight: Weight of a product at any stage (GWE, fillet, portions). Only the weight of the fish part of the product (excl. ice or packaging), but including other ingredients in VAP

Primary processing: Gutted Weight Equivalent (GWE) / Head on Gutted (HOG)

Secondary processing: Any value added processing beyond GWE

Biomass: The total weight of live fish, where number of fish is multiplied by an average weight

Ensilage: Salmon waste from processing with added acid

BFCR: IB feed stock + feed purchase – UB feed stock
 Kg produced – weight on smolt release

EFCR: IB feed stock + feed purchase – UB feed stock
 Kg produced – mortality in Kg – weight on smolt release

Price Notifications: Nasdaq (FCA Oslo) - Head on gutted from Norway (4-5 kg)
 FOB Miami - fillets from Chile (2-3 lb)
 FOB Seattle - whole fish from Canada (8-10 lb)

Source: Kontali Analyse
Appendix

Price indices vs. FOB packing plant

Several price indices for salmon are publicly available. The two most important providers of such statistics for Norwegian salmon are Nasdaq/Fish Pool and Statistics Norway (SSB). Urner Barry in the US provides a reference price for Chilean salmon in Miami and Canadian salmon in Seattle.

In Norway the price is found by deducting freight costs from the farm to Oslo and the terminal cost from the Nasdaq price (~0.70 NOK). If using the SSB custom statistics, you need to adjust for freight to border, duty and taxes, and for quality and contract sales to get the achieved spot price back to producer. The average difference between SSB price and FCA Oslo is ~1 NOK, which gives the average difference between SSB price and back to plant at NOK 2.00 (historically this difference fluctuates from week to week and will normally fall in the range of -2 to +4).

Calculating Urner Barry – Chilean fillets, back to GWE plant is more extensive. It is necessary to use UB prices for both 2/3lb and 3/4lb and adjust for quantity share, market handling (4 cent), and market commission (4.5%). In addition there are some adjustments which vary over time; premium fish share (~92%), reduced price on downgraded fish (~30%), airfreight (~USD 1.50/kg) and GWE to fillet yield (~70%).

*10 year Average difference between SSB and return to packing plant
Source: Fishpool, Nasdaq, SSB, Norwegian Seafood Council, Urner Barry, Kontali Analyse
Appendix
Some historic acquisitions and divestments

In Norway there have been 'countless' mergers between companies over the last decade. The list below only shows some of the larger ones in transaction value. In Scotland consolidation has also been very frequent. In Chile there has been limited activity over the last two years. However, several companies have been listed on the Santiago Stock Exchange. Canada's industry has been extensively consolidated with a few large players and some small companies.

See table on the next page.
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Hydro Seafoods - Sold from Norsk Hydro to Nutreco Aquaculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Gjelaks - Sold to PanFish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Vest Laks - Sold to Austevoll Havfiske</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Torris Products - Sold from Torris to Seafarm Invest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Gjelanger Havbruk - Sold to Aqua Farms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Alf Lone - Sold to Sjøtroll</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Sandvoll Havbruk - Sold to Nutreco Aquaculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Fosen Edelfisk - Sold to Salmor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Langsteinfisk - Sold to Salmor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Tveit Gård - Sold to Atlantic Fjordbruk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Petter Laks - Sold to Senja Sjøfisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Kråkøyfisk - Sold to Salmor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Amulaks - Sold to Follalaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Kvamssdal Fiskeoppdrett - Sold to Rong Laks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Matland Fisk - Sold to Bolaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Sanden Fiskeoppdrett - Sold to Aqua Farms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Øsrnes Fiskeoppdrett - Sold to Aqua Farms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Toftaasund Laks - Sold to Alaskan Fjordbruk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Nye Midor - Sold from Sparebank1 MidtNorge to Leroy Seafood Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Ishavslaks - Sold to Aurora to Volden Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Loden Laks - Sold to Grieg Seafood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Finnmark Seafood - Sold to Follalaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Ullsfjord Fisk - Sold to Nordlaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Henningsvaerfisk - Sold to Nordlaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Flatanger Akva - Sold to Salmor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Naustadl Fiskefarm/Bremanger Fiskefarm - Sold to Firda Sjøfisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Fjordfisk - Sold to Firda Sjøfisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Snevik Salmon - Sold to Leroy Seafood Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Aure Havbruk / M. Utlsnes - Sold from Sjøfisk to Salmor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Follalaks - Sold to Cermaq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Aqua Farms - Sold to PanFish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Aurora Salmon (Part of company) - Sold from DNB to Nor to Leroy Seafood Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Marine Harvest Bolga - Sold to Seafarm Invest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Aurora Salmon (Part of company) - Sold from DNB to Nor to Polarlaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Skjelvik - Sold from Marine Farms to Northern Lights Salmon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Bolstad Fjordbruk - Sold to Haugland Group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Kontali Analyse
<table>
<thead>
<tr>
<th>UK</th>
<th>Chile</th>
<th>North America</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>Shetland Salmon products - Sold to HSF GSP</td>
<td>Chile - Sold to Salmone Multexport</td>
</tr>
<tr>
<td>1996</td>
<td>Strathbain Salmon to MH</td>
<td>Salmone America - Sold to Pjord Seafood</td>
</tr>
<tr>
<td>1996</td>
<td>Kigla, Mainland, Tayinland, Mull Salmon - All sold to Aquascot</td>
<td>Salmoes Tecmar - Sold to Pjord Seafood</td>
</tr>
<tr>
<td>1997</td>
<td>Summer Isles Salmon - Sold to HSF GSP</td>
<td>Salmoes Mainstream - Sold to Cemaq</td>
</tr>
<tr>
<td>1997</td>
<td>Atlantic West - Sold to West Minh</td>
<td>Pesquera Enosol - Sold to Stolt Nielsen</td>
</tr>
<tr>
<td>1998</td>
<td>Marine Harvest Scotland - Sold from BP Nutrition to Nutreco</td>
<td>Marine Farms - Sold to Salmoes Mainstream</td>
</tr>
<tr>
<td>1998</td>
<td>Gaeltic Seafood UK - Sold to Stolt Seafoods</td>
<td>Salmoes Andes - Sold to Salmoes Mainstream</td>
</tr>
<tr>
<td>1998</td>
<td>Mainland Salmon - Sold to Aquascot</td>
<td>Stolt Seafarm - Merged with Marine Harvest</td>
</tr>
<tr>
<td>1999</td>
<td>Hydro Seafood GSP - Initially sold to Nutreco as part of Seafood deal</td>
<td>Pesquera Chillhuem - Sold to GM Torneaglones</td>
</tr>
<tr>
<td>1999</td>
<td>Joseph Johnson & Sons - Sold to Loch Duart</td>
<td>Aquascot Claro - Sold to Aqua Chile</td>
</tr>
<tr>
<td>2000</td>
<td>Aquascot Farming - Sold from Aquascot to Cemaq</td>
<td>Salmoes Chillhuem - Sold to Aqua Chile</td>
</tr>
<tr>
<td>2000</td>
<td>Shetland Norse - Sold to EWOS</td>
<td>Robinson Crucero - Sold to Aqua Chile</td>
</tr>
<tr>
<td>2000</td>
<td>Hydro Seafood GSP - Sold to Norskott Havbruk (Salmar & Leroy Seafood Group) from Nutreco</td>
<td>GM Torneaglones - change name to Marine Farm GMT</td>
</tr>
<tr>
<td>2001</td>
<td>Lachingsay UK - Sold to Hjortland</td>
<td>Merger Pan Fish - Marine Harvest - Fjord Seafood</td>
</tr>
<tr>
<td>2001</td>
<td>Wisco - Sold to Fjord Seafood</td>
<td>Pacific Star - Sold to Andre Navarro</td>
</tr>
<tr>
<td>2002</td>
<td>Weser Sound / Hoganes - Sold to Lakeland Marine</td>
<td>Salmoes Cupuaucuen - Sold to Cooke Aquaculture</td>
</tr>
<tr>
<td>2004</td>
<td>Ardmor Salmon - Sold to Loch Duart</td>
<td>Patagonia Salmon Farm - Sold to Marine Farm GMT</td>
</tr>
<tr>
<td>2004</td>
<td>Pennine Salmon - Sold to Johnson Seafoods Ltd.</td>
<td>Camanchaca Salmon division - Sold to Puksic Group</td>
</tr>
<tr>
<td>2004</td>
<td>Bressay Salmon - Sold to Foremost Fish (from arn. Receiver)</td>
<td>Salmoes Humboldt - Sold to Mitsubishi</td>
</tr>
<tr>
<td>2004</td>
<td>Johnson Seafoods sold to city investors</td>
<td>Pesquera Irate-Pesquero El Golfo - merged into Blumar</td>
</tr>
<tr>
<td>2005</td>
<td>Unst Salmon Company - Sold to Biomar to Marine Farms</td>
<td>Kinloch Damph - Sold to Scottish Seafoods</td>
</tr>
<tr>
<td>2005</td>
<td>Murray Seafood Ltd. - Sold from Austevoll Havfiske to PanFish</td>
<td>Cultivos Marinos Chile - Sold to Cemaq</td>
</tr>
<tr>
<td>2005</td>
<td>Corrie Mohr - Sold to PanFish</td>
<td>Pacific Seafood Aquaculture - Prod. rights & permits for 20 licenses sold to Salmoes Friceysen</td>
</tr>
<tr>
<td>2006</td>
<td>Wester Ross Salmon - MTB</td>
<td>Hjalta & Seafarm - Sold to Grieg Seafood ASA</td>
</tr>
<tr>
<td>2006</td>
<td>Orkney Seafarm Ltd - Sold to Scottish Seafarm</td>
<td>Ortiguella Pacifico sold to Ventsiqueros</td>
</tr>
<tr>
<td>2007</td>
<td>Lighthouse Caledonia - Sain off from Marine Harvest</td>
<td>Pacific Star Aquaculture Ltd - Sold to gwEWD</td>
</tr>
<tr>
<td>2007</td>
<td>Northern Aquaculture Ltd - Sold to GwEWD</td>
<td>Lightwater Seafood Ltd - Sold to Marine Harvest</td>
</tr>
<tr>
<td>2008</td>
<td>Lighthouse Caledonia - changed name to Scottish Salmon Group</td>
<td>Meridian Salmon Group - Sold to Morpol</td>
</tr>
<tr>
<td>2011</td>
<td>Skilda Salmon Farms Limited - Sold to GwEWD</td>
<td>Scotland - Sold to Australian Marine to Aquagen</td>
</tr>
<tr>
<td>2011</td>
<td>Duncan Salmon Limited - Sold to GwEWD</td>
<td>Dziatov Seafoods - Sold to Marine Harvest</td>
</tr>
<tr>
<td>2012</td>
<td>Uyesound Salmon Comp - Sold to Lakeiland Unst (Morpul)</td>
<td>Lewis Salmon - Sold to Marine Harvest Scotland</td>
</tr>
<tr>
<td>2013</td>
<td>Morpol sold to Marine Harvest</td>
<td>Port of Morpol/Meridian sold to Cooke Aquaculture</td>
</tr>
<tr>
<td>2015</td>
<td>Thompson Bros Salmon - Sold to Cooke Aquaculture</td>
<td>Martha Seafoods - Sold to Cooke Aquaculture</td>
</tr>
<tr>
<td>2016</td>
<td>Baita Island Seafarm - Sold to Cooke Aquaculture</td>
<td></td>
</tr>
</tbody>
</table>

Source: Kontali Analyse
Appendix
Atlantic salmon production cycle

Breeding

Breedstock: Bred on selected characteristics e.g. growth, disease resistance, maturation, colour

Spawning and fertilisation: Eggs stripped from females and mixed with milt

Eyed eggs: After 25-30 days fertilized eggs show "eyes". The development is depending on temp. 6000 eggs/litre

Alevins: Small (<2.5 cm), Yolk sack providing first stage nutrition. When absorbed the fish start feeding

Fry/Fart: Start feeding of small fish. Temp 12-14 °C. Fish is growing in FW sites to around 80-100g. Vaccination and grading important. Adaptation to life in seawater (smoltification)

Growing

Transfer to seawater sites by wellboat or trucks

On-growing in seawater sites to around 4.5-5.5 kg (ca 16-22 months depending on temperature). Transport to packing station.

Harvesting

Slaughter, gutting and packing

Processing

The total production cycle takes approx. 10-16 months in freshwater plus 14-22 months in seawater = In sum 24-36 months (in Norway)
Appendix

Sustainability of fish feed

Over the last two decades, there has been a global trend of growing awareness about the economic, social and environmental aspects of optimal use of fishery by-products, and of the importance of reducing discards. Nowadays, more and more by-products are being used in feed, and a growing percentage of fishmeal is being obtained from trimmings and other residues from the preparation of fish fillets.

According to the UN, 7 million tonnes of wild catch are destroyed or discarded as non-commercial harvest annually by commercial fisheries. This figure could have been converted into an annual fish oil quantity of 0.5 million tonnes, i.e. close to 80% of the tonnage used in salmon and trout farming (UN, 2010).

In FAO’s State of World Fisheries and Aquaculture report (2014) it states that in 2012, more than 86% of world fish production was utilised for direct human consumption. The remaining 14% was destined for non-food uses, of which 75% was reduced to fishmeal and fish oil. Although the FAO encourages using more fish directly for human consumption, they are of the opinion that it is more efficient, in a protein-hungry world, to harvest the unmarketable species for animal feed, subsequently consumed by man, than to not harvest the fish at all.

Nonetheless, we have seen a significant decline in the use of fish meal and fish oil in salmon feed due to changes in recipes. While fish meal and fish oil have traditionally been the main ingredients, with reduced availability and increased prices, it is now common practice to substitute these with cheaper and more readily available non-marine raw materials. Fish meal protein is being substituted with plant proteins, such as soya concentrates and sunflower meal or with poultry by-products, such as feather meal (not used in Europe).

A report from Nofima (Ytrestøy et. al., 2014) shows that the average Norwegian salmon diet in 1990 contained 65% fish meal and 24% fish oil and that this had reduced to 19% and 11% respectively in 2013. Holtermann has estimated the same numbers to be 17% and 9% in 2014. At these low levels, salmon farming is a net producer of marine protein, in others words more fish protein is produced than what is used to make the feed.

Substitution of marine raw materials has not been found to have any negative effect on growth, susceptibility to disease, or quality of the fish as long as the fish’s own nutrient requirements are being covered. The downward trend in the use of marine ingredients continues and with the ability of Atlantic salmon to utilise alternative feed ingredients, lack of feed raw materials should not be a threat to the growth of the industry. However, there will be increased competition for the best quality raw materials and feed prices may therefore be affected.

Appendix
The Global Salmon Initiative & the ASC

The Global Salmon Initiative (GSI) is a leadership initiative by global farmed salmon producers, focused on making significant progress towards fully realising a shared goal of providing a healthy and sustainable source of protein to feed a growing population, whilst minimising our environmental footprint, and continuing to improve our social contribution.

GSI’s focus areas are biosecurity (priority is sea lice), standards (ASC), feed and nutrition (fish meal and oil), and improving industry transparency.

The Aquaculture Stewardship Council (ASC), founded in 2010 by WWF and IDH (Dutch Sustainable Trade Initiative), is an independent non-profit organisation with global influence. ASC aims to be the world’s leading certification and labelling programme for sustainably farmed seafood. The ASC’s primary role is to manage the global standards for responsible aquaculture.

ASC works with aquaculture producers, seafood processors, retail and foodservice companies, scientists, conservation groups and consumers. The ASC logo sends a strong message to consumers about the environmental and social integrity of the product they are purchasing. The chart below shows the areas of focus for the ASC.

Appendix

Marine Harvest History

From Mowi to Marine Harvest

2016 Marine Harvest enters into joint venture with Deep Sea Supply to build, own and operate aquaculture vessels
2014 Marine Harvest listed at New York Stock Exchange
2013 Marine Harvest acquires Morpol
2012 Feed division established
2007 Company name is changed to Marine Harvest
2006 PanFish acquires Marine Harvest
2005 Marine Harvest and Stolt Sea Farm merge
 PanFish acquires Fjord Seafood
 John Fredriksen acquires PanFish
2000 Nutreco acquires Hydro Seafood. New company name: Marine Harvest
1999 Nutreco acquires the Scottish farming operations started by Unilever
1998 Mowi is discontinued as a company name
 Hydro Seafood has sites in Norway, Scotland and Ireland
1996 Hydro Seafood acquires Frøya holding
1990 Hydro Seafood registered 25 June
 Restructuring and consolidation of the industry starts
1985 Hydro increases its holding to 100%
1983 Mowi buys GSP in Scotland and Fanad in Ireland
1975 Mowi becomes a recognised brand
1969 Hydro increases its holding to 50%
1965 Mowi starts working with salmon in Norway
 Unilever starts working with salmon in Scotland under the name Marine Harvest
Appendix
MHG has a leading position across the value chain

Marine Harvest business areas

Position:
310,242 tonnes vs. global salmonid feed production of \(~3.7\)m tonnes
380,621 tonnes vs. global production of \(~1.94\)m tonnes (20%)
Global sales network
Leading position in Consumer Products

Focus areas:
Efficiency of operations
Acquisitive growth in Norway and Chile
Organic growth in Consumer Products
Appendix

Marine Harvest farming

Marine Harvest farms salmon in six countries: Norway, Scotland, Canada, Chile, Ireland and the Faroe Islands. In total, the company is present in 24 countries and sells to approximately 70 countries worldwide. Marine Harvest is listed on the Oslo Stock Exchange (:MHG) and has 20,460 shareholders (Dec 31. 2016). The head office is located in Bergen, Norway. At the end of 2016, the group had 12,717 employees worldwide, including temporary employees.

Total revenue for Marine Harvest in 2016 was MEUR 3,510.2 and the harvest quantity of Atlantic salmon was 380,621 tonnes (GWE), which was 20% of the total industry output.

Source: Marine Harvest
Appendix

Marine Harvest sales network

Marine Harvest has an extensive global sales network and sells to approximately 70 countries around the world. Finished products are sold to retail, food service, industry and distributors.

America, Sales & Marketing:
- Sales 660 M EUR – 82,000 tonnes product weight
- VAP Processing: USA & Chile
- 505 FTE

Europe, Sales & Marketing:
- Sales 3.4 BN EUR – 423,000 tonnes product weight
- VAP Processing: France, Belgium, Holland, UK, Poland, Germany, Czech Republic, Spain.
- 6,395 FTE

Asia, Sales & Marketing:
- Sales 370 M EUR – 38,400 tonnes product weight
- VAP Processing: Japan, South Korea, Taiwan, China and Vietnam.
- 1,106 FTE
Appendix

Marine Harvest processing facilities

Marine Harvest’s main secondary processed product is smoked salmon, and the largest factory is found in Poland. We also process several other species such as whitefish and flatfish into ready meals or packed in modified atmosphere products (MAP).
Appendix
Marine Harvest sales channels (2016)

Marine Harvest sells its products to several categories of purchasers. We divide them into: Retail, Food Service (Horeca\(^1\)), Industry, Distributors and others. Each business unit has their own sales profile. MH Canada sells all the salmon they produce to distributors, and MH Chile sells most of their salmon to distributors. In Norway and Scotland, most of the salmon produced is head-on-gutted (HOG, equivalent to GWE) and is therefore sold to industrial customers, who further process the salmon into other products such as fillets, portions, smoked salmon or ready-meal products.

MH Consumer Products processes fish from raw material to value-added products and sells 86% of their products to final sales points met by end consumer (retail + food service).

Note: 1) Horeca = Hotel, restaurants and café (or establishments which prepare and serve food and beverages)
Source: Marine Harvest
In chapter 8, cost and investments in NOK have in some places been converted to Euro. The same is true for NOK prices in chapter 2.6.

The reason for this conversion is the international nature of the salmon industry. As the European Union is the biggest market for Atlantic salmon, it is often more appropriate to use Euro as the quoted currency.

The table to the left show the EURO/NOK rate used for this purpose.

<table>
<thead>
<tr>
<th>Year</th>
<th>EURO/NOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>9.2899</td>
</tr>
<tr>
<td>2015</td>
<td>8.9530</td>
</tr>
<tr>
<td>2014</td>
<td>8.3534</td>
</tr>
<tr>
<td>2013</td>
<td>7.8087</td>
</tr>
<tr>
<td>2012</td>
<td>7.4744</td>
</tr>
<tr>
<td>2011</td>
<td>7.7926</td>
</tr>
<tr>
<td>2010</td>
<td>8.0068</td>
</tr>
<tr>
<td>2009</td>
<td>8.7285</td>
</tr>
<tr>
<td>2008</td>
<td>8.2194</td>
</tr>
<tr>
<td>2007</td>
<td>8.0153</td>
</tr>
<tr>
<td>2006</td>
<td>8.0510</td>
</tr>
<tr>
<td>2005</td>
<td>8.0073</td>
</tr>
<tr>
<td>2004</td>
<td>8.3715</td>
</tr>
<tr>
<td>2003</td>
<td>8.0039</td>
</tr>
<tr>
<td>2002</td>
<td>7.5073</td>
</tr>
<tr>
<td>2001</td>
<td>8.0492</td>
</tr>
<tr>
<td>2000</td>
<td>8.1109</td>
</tr>
<tr>
<td>1999</td>
<td>8.3101</td>
</tr>
<tr>
<td>1998</td>
<td>8.4135</td>
</tr>
<tr>
<td>1997</td>
<td>8.0030</td>
</tr>
<tr>
<td>1996</td>
<td>8.3351</td>
</tr>
<tr>
<td>1995</td>
<td>8.3954</td>
</tr>
<tr>
<td>1994</td>
<td>8.4825</td>
</tr>
<tr>
<td>1993</td>
<td>8.4596</td>
</tr>
</tbody>
</table>

Source: Norges Bank, Bloomberg
Appendix
Sources of industry and market information

Marine Harvest: www.marineharvest.com

Other
Kontali Analyse: www.kontali.no
Intrafish: www.intrafish.no
Norwegian Directorate of Fisheries: www.fiskeridirektoratet.no
Norwegian Ministry of Trade, Industry and Fisheries: www.fkd.dep.no
Norwegian Seafood Council: www.seafood.no
Norwegian Seafood Federation: www.norsksjomat.no
Chilean Fish Directorate: www.sernapersca.cl
FAO: www.fao.org
International fishmeal and fish oil org.: www.iffo.net
Laks er viktig for Norge: www.laks.no

Price statistics
Fish Pool Index: www.fishpool.eu
Kontali Analyse (subscription based): www.kontali.no
Urner Barry (subscription based): www.urnerbarry.com
Statistics Norway (SSB): www.ssb.no/laks_en/
NASDAQ: www.salonprice.nasdaqomxtrader.com